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The standard cosmological model, which includes only Compton scattering photon interactions at

energy scales near recombination, results in zero primordial circular polarization of the cosmic microwave

background. In this paper we consider a particular renormalizable and gauge-invariant standard model

extension coupling photons to an external vector field via a Chern-Simons term, which arises as a radiative

correction if gravitational torsion couples to fermions. We compute the transport equations for polarized

photons from a Boltzmann-like equation, showing that such a coupling will source circular polarization of

the microwave background. For the particular coupling considered here, the circular polarization effect is

always negligible compared to the rotation of the linear polarization orientation, also derived using the

same formalism. We note the possibility that limits on microwave background circular polarization may

probe other photon interactions and related fundamental effects such as violations of Lorentz invariance.

DOI: 10.1103/PhysRevD.79.063524 PACS numbers: 98.80.�k, 12.60.Cn, 98.70.Vc

I. INTRODUCTION

One of the great successes of the standard cosmology is
the prediction and measurement of the temperature anisot-
ropies in the cosmic microwave background radiation.
Most of these photons have freely propagated since the
epoch of last scattering roughly 14� 109 years ago and
encode the initial conditions for structure formation.
Measurements are now consistent to high precision with
the simplest cosmological models with an initial power-
law spectrum of adiabatic perturbations. Linear polariza-
tion of the microwave background fluctuations is also a
generic result of these models; recent detections of the
linear polarization power spectrum and of the cross-
correlation between linear polarization and temperature
are also consistent with the same cosmological models.

In general, radiation can have linear polarization, with 2
degrees of freedom (a polarization amplitude and orienta-
tion) as well as circular polarization, with a single degree
of freedom. It is well-known that if an initially unpolarized
photon field evolves solely via Compton scattering from
free electrons plus free streaming, the resulting radiation
field can have linear but not circular polarization. In the
tight-coupling regime prior to last scattering when
Compton scattering is rapid compared to the cosmological
expansion time scale, the cosmic radiation field will be
unpolarized. As the universe cools and the free electrons
become bound into neutral hydrogen, a small linear polar-
ization is generated from the balance of free-streaming and
Compton scattering during this recombination process, but
the resulting microwave background radiation today has

circular polarization which is identically zero. In this pa-
per, we consider a generic class of interactions between
photons and an external field which can produce circular
polarization. The interactions have been considered in
other contexts and are general enough to be expected in
broad classes of theories beyond the standard model of
particle physics. The same interaction can also arise if
nonzero spacetime torsion impacts the microwave back-
ground radiation. The goal of this paper is two-fold. First,
we provide an explicit calculation showing how circular
polarization can be generically sourced in the microwave
background, with the relevant evolution equations. Second,
we demonstrate what the underlying microphysics might
look like.
Consider the following extension of the photon sector of

quantum electrodynamics:

L 0 ¼ LMAXWELL þLT

� � 1

4
F��F

�� þ g�����A�T�F��; (1)

where LT is CPT odd and violates Lorentz invariance and
g is the coupling constant of the interaction. Several au-
thors have investigated such a Lorentz-invariance violating
extension of QED for a constant 4-vector T� (see e.g. [1–3]
and references therein). These so-called Standard Model
Extensions have been shown to be renormalizable while
maintaining gauge invariance [4]. We consider here only
the flat-spacetime interaction term LT for simplicity; this
will be a good approximation in any cosmological context
(see Refs. [5,6] and for the curved spacetime generaliza-
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tion, which includes an extra factor of the square root of the
metric determinant). If T� is fixed as a constant, the

Lagrangian density in Eq. (1) is Uð1Þ gauge invariant apart
from a boundary term; therefore in these cases the action is
gauge invariant.

It is well-known that such an extension should result in
optical activity in the propagation of electromagnetic ra-
diation [7–10]; specifically, a modification to the disper-
sion relations of free electromagnetic radiation results in a
rotation of the plane of linear polarization during propa-
gation. We make no explicit assumption about whether T�

is spacelike or timelike, although the timelike case appears
pathological since it leads to a violation of causality and
unitarity [11]. The magnitude of optical activity of elec-
tromagnetic radiation has been constrained by analysis of
observational data from cosmological sources and from the
microwave background radiation [7,12–20]. Such a term
may arise as a radiative correction following the coupling
of gravitational torsion with fermionic matter [21,22]. The
same term has also been associated with the cancellation of
gauge anomalies in QED when the background field T� is

allowed to couple to the axial current (see e.g. [23]).
In this paper, we show that in addition to the well-known

polarization rotation, such a term may also generate circu-
lar polarization, although for the specific case of Eq. (1) the
circular polarization is always negligible compared to the
polarization rotation. The generation of circular polariza-
tion following the optical activity produced by T� parallels

the Faraday conversion and Faraday rotation effects for
propagation in magnetized plasmas; for a discussion in the
context of the microwave background, see [24]. The ob-
servation of circularly polarized microwave background
radiation could be evidence of Lorentz-invariance viola-
tion and thus physics beyond the standard model; con-
versely, limits on circular polarization may constrain a
certain class of standard model extensions. For a related
analysis using an axionlike pseudoscalar coupling to the
electromagnetic field, see Ref. [25], who also find a non-
zero circular polarization and rotation of linear
polarization.

In Sec. II, we review the usual description of polarized
electromagnetic radiation in terms of Stokes parameters;
linear polarization is described by theQ andU parameters,
while circular polarization is described by a nonzero V
parameter. Section III reviews the construction of the
Boltzmann-type equation for the photon number density,
starting from the quantum-mechanical evolution of the
photon density matrix. In Secs. IV and V, we calculate
the evolution of the Stokes parameters to first and second
order, respectively, in the interaction termLT , deriving the
evolution equation for the V polarization, which is gener-
ated from linear polarization due to the interaction term.
We conclude in Sec. IV with estimates of the size of the V
polarization in the microwave background for given inter-
actions along with the magnitude of linear polarization

rotation. The mathematical details of evaluating the first
and second-order interaction terms are relegated to
Appendices A and B, while Appendix C addresses the
issue of gauge invariance.

II. STOKES PARAMETERS

The polarization state of light is most easily described by
making use of the Stokes parameters. For a complete
review see, e.g., Refs. [26–28] or any optics text. Here
we review the basic construction of the Stokes parameters
in the classical and quantum mechanical contexts in order
to motivate the quantum field theoretical construction.
Consider a classical electromagnetic plane wave with elec-
tric field given by the components

E1ðtÞ ¼ a1 sinð!t� �1Þ and E2ðtÞ ¼ a2 sinð!t� �2Þ;
(2)

where we assume, for simplicity, that the wave is nearly
monochromatic with frequency!, such that a1, a2, �1, and
�2 only vary on time scales long compared to !�1. The
Stokes parameters in the linear polarization basis are then
defined as

I � hða1Þ2 þ ða2Þ2i; (3)

Q � hða1Þ2 � ða2Þ2i; (4)

U � h2a1a2 cos�i; (5)

V � h2a1a2 sin�i; (6)

where � � �2 � �1 and the brackets signify a time average
over a time long compared to !�1. The I parameter
measures the intensity of the radiation, while the parame-
ters Q, U, and V each carry information about the polar-
ization of the radiation. Unpolarized radiation is described
by Q ¼ U ¼ V ¼ 0. The linear polarization of the radia-
tion is encoded in Q and U, while the parameter V is a
measure of elliptical polarization with the special case of
circular polarization ocurring when a1 ¼ a2 and � ¼
��=2. From here on we will simply refer to V as the
measure of circular polarization, which is technically cor-
rect if Q ¼ 0. Note that while I and V are coordinate
independent, Q and U depend on the orientation of the
coordinate system used on the plane orthogonal to the
direction of propagation. Under a rotation of the coordinate
system by an angle �, the parameters Q and U transform
according to

Q0 ¼ Q cosð2�Þ þU sinð2�Þ;

U0 ¼ �Q sinð2�Þ þU cosð2�Þ;
while the angle defined by

� ¼ 1

2
arctan

�
U

Q

�
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goes to ��� following a rotation by the angle �.
Therefore, Q and U only define an orientation and not a
particular direction in the plane: after a rotation by � they
are left unchanged. Physically, this is simply a manifesta-
tion of the oscillatory behavior of the electric field. These
properties indicate that Q and U are part of a second-rank
symmetric trace-free tensor Pab, i.e. a spin-2 field in the
plane orthogonal to the direction of propagation. Such a
tensor can be represented as

Pij ¼ P 0
0 �P

� �
; (7)

in an orthonormal eigenbasis, where P ¼ ðQ2 þU2Þ1=2 is
often called the magnitude of linear polarization.

In quantum mechanics we can express the state of a
photon A as

jAi ¼ X
i

aij�ii; (8)

where j�ii (i ¼ 1, 2) span the polarization state space and
ai are in general complex. The projection operators

Î � j�1ih�1j þ j�2ih�2j; (9)

Q̂ � j�1ih�1j � j�2ih�2j; (10)

Û � j�1ih�2j þ j�2ih�1j; (11)

V̂ � ij�2ih�1j � ij�1ih�2j (12)

have expectation values in single photon states which give
the classical Stokes parameters, Eqs. (3)–(6). In a general
mixed state, the density matrix 	 on the polarization state
space encodes the intensity and polarization of the photon
ensemble. For example,

hQ̂i ¼ trð	Q̂Þ
trð	Þ ¼ 1

trð	Þ tr
�

	11 	12

	21 	22

� �
1 0
0 �1

� ��

¼ 	11 � 	22

trð	Þ :

Similar relations hold for the other ‘‘Stokes operators’’
such that the density matrix can be represented as

	 ¼ trð	Þ
2

1þQ U� iV
Uþ iV 1�Q

� �
; (13)

where Q ¼ hQ̂i, U ¼ hÛi, and V ¼ hV̂i.

III. THE PHOTON BOLTZMANN EQUATION

We now review the construction of the evolution equa-
tion for the photon number operator under the influence of
some perturbation to a free theory. The following formal-
ism was developed to study neutrino mixing and damping
[29,30]. It has also been applied to describe the generation
of linear polarization in the microwave background due to

Compton scattering during recombination [31], generaliz-
ing an earlier kinetic equation treatment of microwave
background temperature fluctuations [32].
Consider an ensemble of free photons. We will assume

that the interaction LT is slowly ‘‘turned on’’ and that the
interactions of the photons with the external field T� are

localized such that the photons can be considered free
(with respect to the interaction LT) both before and after
each point interaction. That is, we make the usual assump-
tions of scattering theory. We will not consider any pos-
sible interference effects which might occur between LT

and any other interaction.
The free photon field in the Coulomb (radiation) gauge

can be expressed as

Â �ðxÞ ¼
Z d3k

ð2�Þ32k0 ½âsðkÞ�s�ðkÞe
�ik�x

þ âys ðkÞ��s�ðkÞeik�x�; (14)

where �s�ðkÞ are the photon polarization 4-vectors and s,

which takes the values 1 and 2, indexes the orthogonal
transverse polarizations. The free creation and annihilation
operators satisfy the canonical commutation relation

½âiðkÞ; âyj ðk0Þ� ¼ ð2�Þ32k0�ij�
ð3Þðk� k0Þ; (15)

where k0 ¼ jkj.
We will be interested in the evolution of the polarization

state of a photon ensemble, which is completely charac-
terized by the density matrix 	ij defined via

hâyi ðkÞâjðk0Þi ¼ ð2�Þ32k0�ð3Þðk� k0Þ	ijðkÞ: (16)

The number operator D̂ijðkÞ ¼ âyi ðkÞâjðkÞ, according to

(16), is related to 	ijðkÞ as
hD̂ijðkÞi ¼ ð2�Þ32k0�ð3Þð0Þ	ijðkÞ: (17)

The infinite factor �ð3Þð0Þ is a remnant of the infinite
quantization volume. As we show explicitly below, it can-
cels from all final expressions. Motivated by the construc-
tion in the quantum-mechanical system above, we can
project out quantities analogous to the classical Stokes
parameters:

tr ð
0	ðkÞÞ ! I / hĤ 0ðkÞi; (18)

tr ð
z	ðkÞÞ ! Q / hD̂11ðkÞi � hD̂22ðkÞi; (19)

tr ð
x	ðkÞÞ ! U / hD̂12ðkÞi þ hD̂21ðkÞi; (20)

tr ð
y	ðkÞÞ ! iV / hD̂12ðkÞi � hD̂21ðkÞi; (21)

where 
0 is the 2� 2 identity matrix, 
i are the Pauli

matrices and the trace is over polarization indices. Ĥ 0ðkÞ
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is the free energy density operator of the mode with wave
number k.

We ignore any correlations such as hâiðkÞâjðk0Þi and

hâyi ðkÞâyj ðk0Þi which might be generated via the interaction

LT . In essence we are assuming that the background field
T� varies slowly enough in time so that physical two-

photon states are neither created nor destroyed by the
interaction LT . If we define !T as a characteristic energy
scale of the background field T� and ! as the frequency of

a particular mode associated with free oscillations of the
creation and annihilation operators, then we are requiring
that !T � �!=! � ! [33]. Note that �!=! is the order

at which mixing occurs between âi and âyi , and such a

mixing will result in a variation �hâiðkÞâjðk0Þi ’
ð�!=!Þhâyi ðkÞâjðk0Þi, which again we neglect. Naively,

we then expect the following formalism to fail for low-
frequency photon modes, although at precisely what scale
the approximation breaks down depends on the character-
istic scale of the background field T�.

The evolution of the number operator D̂ijðkÞ can be

computed using a perturbative expansion in the interaction
strength. The following reviews the construction detailed
in [30]. Recall that the time evolution of any Heisenberg
picture operator is given by

d

dt
D̂ij ¼ i½Ĥ; D̂ij�: (22)

If the full Hamiltonian can be split into a free and interact-

ing part, Ĥ ¼ Ĥfree þ Ĥint, then (22) becomes.

d

dt
D̂ij ¼ i½Ĥfree; D̂ij� þ i½Ĥint; D̂ij�: (23)

A first-order perturbative approximation for the evolution
of the number operator is given by replacing all operators
on the right hand side of Eq. (23) by their free-theory
counterparts, e.g.�

d

dt
D̂ij

�
’ ih½Ĥ0

int; D̂
0�i; (24)

where Ô0
corresponds to the operator Ô evaluated in terms

of the operators of the free theory. The above assumes that

½Ĥ0
free; D̂

0� ¼ 0. We will refer to the term on the right hand
side of (24) as the refractive term, or the forward scattering
term. To determine a second-order perturbative approxi-
mation, we will use the fact that we can expand any
operator to first order in interactions as

�̂ðtÞ ’ �̂0ðtÞ þ i
Z t

0
dt0½Ĥ0

intðt� t0Þ; �̂0ðtÞ�; (25)

with the initial conditions �̂ð0Þ ¼ �̂0ð0Þ. The expansion
Eq. (25) can be verified by explicitly taking the time
derivative of both sides and seeing that one recovers the
Heisenberg equation to first order in interactions. We now

expand ½Ĥint; D̂� as in (25), insert the result into (23), and

upon the evaluation of all operators in terms of the free-
theory operators arrive at�
d

dt
D̂ij

�
ðtÞ ’ ih½Ĥ0

intðtÞ; D̂0�i

�
Z t

0
dt0h½Ĥ0

intðt� t0Þ; ½Ĥ0
intðtÞ; D̂0��i: (26)

The second term in (26) will be referred to as the damping
term or the nonforward scattering term. In terms of 	, the
evolution equation reads

ð2�Þ3�3ð0Þ2q0 d

dt
	ijð0;qÞ

¼ ih½Ĥ0
intð0Þ; D̂0

ijðqÞ�i � 1

2

Z 1

�1
dt0h½Ĥ0

intðt0Þ;

½Ĥ0
intð0Þ; D̂0

ijðqÞ��i; (27)

where, as mentioned above, all factors of �3ð0Þ will cancel
from the final expressions. In going from (26) to (27), we
have assumed the time step t in Eq. (26) is both small
relative to the characteristic time scale of the evolution of 	
and large relative to the duration of a single interaction.
This allows us to take t ! 1 and set 	ðtÞ ¼ 	ð0Þ [30].
We have then replaced the integral (

R1
0 dt) with

( 12
R1
�1 dt), the difference being a principle part integral

which is a second order correction to the refractive term.
Equation (27) can be viewed as a Generalized Boltzmann
Equation for the phase space function 	. In this approxi-
mation, we have a set of differential equations for the
components 	ij at t ¼ 0; if the interactions are ‘‘forgotten’’

between intermediate collisions (an assumption known as
molecular chaos in the derivation of the standard
Boltzmann equation), then the differential equations will
be valid for all times over which the interaction is relevant.
The Liouville terms on the left side will incorporate any
effects which result from a departure of the spacetime
metric from a flat metric, including any weak inhomoge-
neities due to the presence of gravitational perturbations
about a homogeneous cosmology. The case HintðtÞ ¼R
dx �c��A�c as in full QED, where c is a spinor field

associated with the electron, recovers the radiative transfer
equations of Chandrasekhar [34] in the appropriate limits
(see [31] for more details).
As we will see below, this construction allows lineariz-

ing the right side of Eq. (27) in 	. We can expand the
photon density matrix about a uniform unpolarized distri-
bution (ignoring any small inhomogeneities) as

	ijðt; k; k̂Þ ¼ 	ð0Þ
ij ðt; kÞ þ 	ð1Þ

ij ðt; k; k̂Þ; (28)

where 	ð0Þ
11 ¼ 	ð0Þ

22 and 	ð0Þ
12 ¼ 	ð0Þ

21 ¼ 0. As a consistency

check, the right side of Eq. (27) should vanish when

evaluated in terms of 	ð0Þ so that in, for example, an
FRW background of zero spatial curvature with scale
factor aðtÞ we have [31]
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d

dt
	ð0Þ
11 ¼ @	ð0Þ

11

@t
� _a

a
k
@	ð0Þ

11

@k
¼ 0; (29)

the solution of which is 	ð0Þ
11 ðt; kÞ ¼ 	ð0Þ

11 ðkaÞ, recovering
the uniform redshift due to cosmological expansion.

In order to make contact with the measurable Stokes
parameters, we define the normalized brightness perturba-
tions [31]

�I �
�
q

4

@	ð0Þ
11 ðqÞ
@q

��1ð	ð1Þ
11 þ 	ð1Þ

22 Þ; (30)

�Q �
�
q

4

@	ð0Þ
11 ðqÞ
@q

��1ð	ð1Þ
11 � 	ð1Þ

22 Þ; (31)

�U �
�
q

4

@	ð0Þ
11 ðqÞ
@q

��1ð	ð1Þ
12 þ 	ð1Þ

21 Þ; (32)

�V � �i

�
q

4

@	ð0Þ
11 ðqÞ
@q

��1ð	ð1Þ
12 � 	ð1Þ

21 Þ; (33)

where q ¼ ka is the comoving photon momentum and we
have expanded the density matrix 	 in a linear polarization
basis.

IV. THE FIRST-ORDER INTERACTION TERM

We now evaluate the right side of the Generalized
Boltzmann Eq. (27) for an interaction Hamiltonian which
is linear in the Hamiltonian density

Ĥ T ¼ �g�����:Â�T�F̂��:; (34)

where Â� for the free theory is given by Eq. (14) and

F̂�� ¼ 2@½�Â�� is the free electromagnetic field strength

operator. We will treat T� as a classical background field,

the dynamics of which are not influenced by the electro-
magnetic interaction Eq. (34) and are assumed to be ex-
ternally prescribed. The symbol : � � � : denotes normal
ordering of the enclosed operator products.

Following a local Uð1Þ gauge transformation �GA� ¼
@� of A�, the resulting change in the Hamiltonian density

Eq. (34) is given by

�GH T ¼ �g�����ð@�ÞT�F��

¼ g�����ð@½�T��ÞF�� � g�����@�ðT�F��Þ;
(35)

where the square brackets denote antisymmetrization and
we have used @½�F��� ¼ 0. If @½�T�� ¼ 0 then the inter-

action Hamiltonian is gauge invariant apart from a bound-
ary term. We assume that the external field T�ðxÞ does

indeed satisfy this condition allowing us to maintain gauge
invariance, which is detailed in the second-order calcula-
tion in Appendix C. Furthermore, we assume that T�ðxÞ is

a pseudovector: under a parity transformation the external
field transforms as

T�ðt;�xÞ ¼
��T�ðt;xÞ; � ¼ 0
þT�ðt;xÞ; � ¼ 1; 2; 3

(36)

and under time reversal the external field transforms as

T�ð�t;xÞ ¼
�þT�ðt;xÞ; � ¼ 0
�T�ðt;xÞ; � ¼ 1; 2; 3:

(37)

We will find it useful to consider the Fourier transform of
T�,

~T �ðpÞ ¼
Z

d4xT�ðxÞe�ip�x: (38)

In momentum space the gauge invariance restrictions can
be expressed by the condition

p½� ~T��ðpÞ ¼ 0: (39)

In order to determine whether circular polarization can be
sourced at some order of (35), we will not need to impose
any further restrictions on T�ðxÞ aside from those listed

above. Specifically, our calculations do not assume that
T�ðxÞ is either timelike or spacelike. As indicated by the

investigation in [11], violations of causality and unstable
solutions may arise for the case of timelike T�ðxÞ, and the

results here must be interpreted with care in this case.
In Appendix A below we detail the calculation of the

first-order interaction Hamiltonian which is linear in the
Hamiltonian density Eq. (34), as well as the refractive and
damping terms of Eq. (27) due to first-order processes.
Quoting the results of Appendix A, the interaction
Hamiltonian for first-order processes is given by

1ĤintðtÞ ¼ �2ig
Z

dpdk
~T�ðpÞeiðk0þp0�jkþpjÞt

2jkþ pj âys ðkÞârð~kÞ
� ��s�ðkÞð���0�ðjkj þ jkþ pjÞ
þ ���j�ð2kj þ pjÞÞ�r�ðkþ pÞ: (40)

The refractive term of Eq. (27) for this first-order interac-
tion Hamiltonian is given by

ih½1Ĥintð0Þ; D̂uvðqÞ�i ¼ 4gq0ð2�Þ3�3ð0Þ�s�ðqÞð�ur	svðqÞ
� �vs	urðqÞÞA��ðqÞ�r�ðqÞ;

(41)

where A�� is defined via

ð2�Þ3�3ð0ÞA��ðqÞ ¼ ð2�Þ3�3ð0ÞA½���ðqÞ
¼

Z dp

2jqþ pj ð2�Þ
3�3ð�pÞ ~T�ðpÞ

� �����ð2q� þ ~p�Þ; (42)

and we have for convenience defined ~p � ð�q;pÞ, �q �
jqþ pj � jqj.
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As detailed in Appendix A the damping term of Eq. (27)
due to first-order processes is given by

Duv �
Z 1

�1
dt0h½1Ĥintðt0Þ; ½1Ĥintð0Þ; D̂uvðqÞ��i

¼ �ð2igÞ2�m��s�
Z dp

2jqþ pj
~Tð~pÞq	�
	� ~T�ðpÞ

� ð2qþ ~pÞ������~�n
~�r�ð�nr�us	mvðqÞ
þ �rn�vs	umðqÞ � �us�mv	rnðqþ pÞ
� �um�sv	nrðqþ pÞÞ; (43)

where we have defined �r���r�ðqÞ and ~�r���r�ðqþpÞ.
Once the density matrix is expanded as given in Eq. (28),

it is straightforward to see that the refractive term, Eq. (41),

vanishes when evaluated in terms of 	ð0ÞðjqjÞ. For the
damping term, Eq. (43), we must perform an expansion

of 	ð0Þðjqþ pjÞ ¼ 	ð0ÞðjkjÞ, in the p integral of Eq. (43),
about jqj:

	ð0ÞðjkjÞ ¼ 	ð0ÞðjqjÞ þO
�
d	ð0Þ

djkj ðjqjÞ
�
; (44)

which is a suitable approximation as long as ~Tðp0;pÞ has
support solely over jpj � jqj, where jqj is the energy of

the scattering photons. Then to lowest order in 	ð0Þ the
damping term vanishes and we have

d

dt
	ð0Þ ¼ 0þO

�
g2

d	ð0ÞðjqjÞ
djqj

�
: (45)

In terms of the Stokes brightness perturbations defined
in Eqs. (30)–(33), to first order in g the evolution of the
polarization of the photon ensemble becomes

d

dt
�I ¼ 0; (46)

d

dt
�Q ¼ �g�ðqÞ�U; (47)

d

dt
�U ¼ g�ðqÞ�Q; (48)

d

dt
�V ¼ 0; (49)

where we have defined the quantity

�ðqÞ � 4�1�ðqÞA��ðqÞ�2�ðqÞ: (50)

For processes which are first order in the Hamiltonian
density Eq. (34), according to Eq. (49) no circular polar-
ization is generated to OðgÞ in our approximation. In
fact, it is easy to see that to OðgÞ (the refractive term),
Eqs. (46)–(49) reproduce the well-known effect of optical
activity of the electromagnetic radiation, rotating the plane
of linear polarization during propagation [7–10]. This is a
useful check of the calculations.
The relevant linear combinations of the damping term

Eq. (43) which source the polarization of the photon en-
semble to Oðg2Þ and due to first-order processes are

D11 þD22 ¼ �ð2igÞ2
Z dp

2jqþ pj
~Tð~pÞq	�
	� ~T�ðpÞð2qþ ~pÞ�fð~�1
~�1� þ ~�2
~�2�Þ½2�1��1�	ð1Þ

11 ðqÞ þ 2�2��2�	
ð1Þ
22 ðqÞ

þ ð�2��1� þ �1��2�Þ½	ð1Þ
12 ðqÞ þ 	ð1Þ

21 ðqÞ�� � ð�1��1� þ �2��2�Þ½2~�1�~�1
	ð1Þ
11 ðqþ pÞ þ 2~�2�~�2
	

ð1Þ
22 ðqþ pÞ

þ ð~�1�~�2
 þ ~�2�~�1
Þ½	ð1Þ
12 ðqþ pÞ þ 	ð1Þ

21 ðqþ pÞ��g þO
�
g2

d	ð0ÞðjqjÞ
djqj

�
;

D11 �D22 ¼ �ð2igÞ2
Z dp

2jqþ pj
~Tð~pÞq	�
	� ~T�ðpÞð2qþ ~pÞ�fð~�1
~�1� þ ~�2
~�2�Þ½2�1��1�	ð1Þ

11 ðqÞ � 2�2��2�	
ð1Þ
22 ðqÞ

þ ð�2��1� � �1��2�Þ½	ð1Þ
12 ðqÞ þ 	ð1Þ

21 ðqÞ�� � ð�1��1� � �2��2�Þ½2~�1�~�1
	ð1Þ
11 ðqþ pÞ þ 2~�2�~�2
	

ð1Þ
22 ðqþ pÞ

þ ð~�1�~�2
 þ ~�2�~�1
Þ½	ð1Þ
12 ðqþ pÞ þ 	ð1Þ

21 ðqþ pÞ��g þO
�
g2

d	ð0ÞðjqjÞ
djqj

�
;

D12 þD21 ¼ �ð2igÞ2
Z dp

2jqþ pj
~Tð~pÞq	�
	� ~T�ðpÞð2qþ ~pÞ�fð~�1
~�1� þ ~�2
~�2�Þ½ð�1��1� þ �2��2�Þ½	ð1Þ

12 ðqÞ

þ 	ð1Þ
21 ðqÞ� þ 2�1��2�	

ð1Þ
11 ðqÞ þ 2�2��1�	

ð1Þ
22 ðqÞ� � ð�2��1� þ �1��2�Þ½2~�1�~�1
	ð1Þ

11 ðqþ pÞ

þ 2~�2�~�2
	
ð1Þ
22 ðqþ pÞ þ ð~�1�~�2
 þ ~�1
~�2�Þ½	ð1Þ

12 ðqþ pÞ þ 	ð1Þ
21 ðqþ pÞ��g þO

�
g2

d	ð0ÞðjqjÞ
djqj

�
;
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D12 �D21 ¼ �ð2igÞ2
Z dp

2jqþ pj
~Tð~pÞq	�
	� ~T�ðpÞ

� ð2qþ ~pÞ�fð~�1
~�1� þ ~�2
~�2�Þ
� ð�1��1� þ �2��2�Þ½	ð1Þ

12 ðqÞ � 	ð1Þ
21 ðqÞ�

� ð�2��1� � �1��2�Þð~�1�~�2
 � ~�1
~�2�Þ
� ½	ð1Þ

12 ðqþ pÞ � 	ð1Þ
21 ðqþ pÞ�g:

Given the above expressions it is easy to see that no mixing
occurs between �V and the set f�I;�Q;�Ug as a result of
the damping term Eq. (43). Therefore, in our approxima-

tion, no circular polarization is generated by first-order
processes up to Oðg2Þ.

V. THE SECOND-ORDER INTERACTION TERM

We now move on to calculate the contribution to the
evolution of the photon density matrix from scattering
processes which are second order in the interaction
Hamiltonian density operator Eq. (34). Details of the cal-
culation of the second-order interaction Hamiltonian and
the corresponding refractive term are presented in
Appendix B. The second-order interaction Hamiltonian is
given by

2ĤintðtÞ ¼ � ið2�Þ3
2

ð2gÞ2
Z d3p1

ð2�Þ32p0
1

dl1dl2
d3p2

ð2�Þ32p0
2

������	
� ~T�ðl1Þ ~T
ðl2Þð�ig�	Þ
�
ððp1 þ p2 þ l2Þ�ð2p2 þ l2ÞÞ

� e�iððp1Þ0�ðl1Þ0�ðp2Þ0�ðl2Þ0Þt�3ðp1 � l� p2 � lÞ �
�
s�ðp2Þ�s�ðp1Þâys ðp2Þârðp1Þ

ðp2 þ l2Þ2 þ i�

þ ððp1 þ p2 � l2Þ�ð2p2 � l2ÞÞeiððp1Þ0þl0
1
�ðp2Þ0þl0

2
Þt�3ðp1 þ l� p2 þ lÞ �

�
s�ðp1Þ�r�ðp2Þâys ðp1Þârðp2Þ

ðp2 � l2Þ2 þ i�

�
: (51)

The refractive term of Eq. (27) due to this interaction
Hamiltonian is

ih½2Ĥintð0Þ; D̂uvðqÞ�i ¼ ið2�Þ3�3ð0Þð2gÞ2ð�ur	svðqÞ
� �vs	urðqÞÞ��s ðqÞ��r ðqÞT ��ðqÞ;

where we have defined T ijðqÞ via

ð2�Þ3�3ð0ÞT ijðqÞ ¼ �
Z

dl1dl2ð2�Þ3�3ðlþ lÞ ~Tjðl02; lÞ
� ~Tiðl01; lÞ½q � ðl1 þ l2Þ�
�

�
1

ðl2Þ2 þ 2l2 � qþ i�

� 1

ðl2Þ2 � 2l2 � qþ i�

�
: (52)

Note that the interaction Hamiltonian Eq. (51) and the
refractive term Eq. (52) were computed using the photon
propagator in the Feynman gauge Eq. (B3), but a demon-
stration of gauge invariance of these results is detailed in
Appendix C. For an unpolarized photon ensemble, it is
easy to see that the right side of Eq. (52) vanishes when
evaluated in terms of 	ð0Þ defined in Eq. (28) above. The
contribution to the perturbed density matrix, 	ð1Þ, to second
order in the interaction coupling g is

d

dt
	ð1Þ
uvðqÞ ¼ 2ig2

q0
ð�ur	

ð1Þ
sv ðqÞ

� �vs	
ð1Þ
ur ðqÞÞ��s ðqÞ��r ðqÞT ��ðqÞ: (53)

Here we have used Eq. (27) and have ignored the damping
term, which is of Oðg4Þ. Expressing Eq. (53) explicitly in

terms of photon density matrix components gives the evo-
lution equations

d

dt
	ð1Þ
11 ðqÞ ¼

2ig2

q0
ð���1 �

�
2	

ð1Þ
12 ðqÞ þ ��2 �

�
1	

ð1Þ
21 ðqÞÞT ��ðqÞ

(54)

d

dt
	ð1Þ
22 ðqÞ ¼

2ig2

q0
ð��1 ��2	ð1Þ

12 ðqÞ � �
�
2 �

�
1	

ð1Þ
21 ðqÞÞT ��ðqÞ

(55)

d

dt
	ð1Þ
12 ðqÞ ¼

2ig2

q0
ð½��1 ��1 � �

�
2 �

�
2�	ð1Þ

12 ðqÞ

� ��2 �
�
1½	ð1Þ

11 ðqÞ � 	ð1Þ
22 ðqÞ�ÞT ��ðqÞ (56)

d

dt
	ð1Þ
21 ðqÞ ¼

2ig2

q0
ð�½��1 ��1 � ��2 �

�
2�	ð1Þ

21 ðqÞ

þ ��1 �
�
2½	ð1Þ

11 ðqÞ � 	ð1Þ
22 ðqÞ�ÞT ��ðqÞ: (57)

All polarization vectors �
�
r in the above expression depend

on q, the same photon momentum as in the argument of the
photon density matrix. Using the Stokes brightness pertur-
bations in Eqs. (30)–(33), we can now express the evolu-
tion of the polarization of the photon ensemble due to
processes mediated by 2ĤintðtÞ as

d

dt
�IðqÞ ¼ 0; (58)

d

dt
�QðqÞ ¼ �g2

q0
ð�ðq̂Þ�VðqÞ þ ic ðq̂Þ�UðqÞÞ; (59)
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d

dt
�UðqÞ ¼ �g2

q0
ð�ðq̂Þ�VðqÞ � ic ðq̂Þ�QðqÞÞ; (60)

d

dt
�VðqÞ ¼ g2

q0
ð�ðq̂Þ�UðqÞ þ �ðq̂Þ�QðqÞÞ; (61)

where we have defined the contractions

�ðq̂Þ � �2T ��ð��1 ��2 þ ��2 �
�
1Þ; (62)

�ðq̂Þ � 2T ��ð��1 ��1 � ��2 �
�
2Þ; (63)

c ðq̂Þ � 2T ��ð��1 ��2 � ��2 �
�
1Þ (64)

and the quantity T �� is defined via the integral expression
Eq. (52).

The circular polarization brightness �V is sourced by
terms which are proportional to either�Q or�U : a linearly

polarized photon ensemble in the presence of the interac-
tion Eq. (34) will acquire circular polarization due to
processes which are of second order in the interaction.
As long as the interaction acts, both Stokes brightnesses
�Q and �U are rotated with �V . Note that the above

equations do not depend on the time component of T�ðxÞ
since the polarization vectors are purely spatial.

VI. DISCUSSION

The evolution Eqs. (58) to (61), along with
Eqs. (46) to (49), are the central result of this paper.
Other source terms associated with the usual Compton
scattering effects will also appear on the right sides.
While the polarization brightnesses will be zero prior to
recombination, during recombination �Q and �U become

nonzero, with an amplitude a factor of 20 smaller than the
intensity fluctuations �I. It is easy to see by inspection of
the evolution equations that at that point, �Q and �V will

rotate into each other with a characteristic angular fre-
quency !QV ¼ g2�=k0, �U and �V will rotate into each

other with a characteristic frequency !UV ¼ g2�=k0, and
�Q and �U will rotate into each other with a characteristic

frequency !QU ¼ g�, along with an exponential decay or

growth of �Q and �U associated with the first-order damp-

ing effects. All of these source terms are active whenever
the interaction Eq. (34) is nonzero, in contrast to the
conventional Compton scattering terms, which are only
significant when the photons propagate through ionized
regions of the universe.

The rotation between �Q and �U can be constrained

from current measurements in a straightforward way.
Linear polarization on the sky is conveniently expressed
in a different basis, corresponding to the ‘‘gradient’’ and
‘‘curl’’ pieces of the polarization tensor field [35,36], also
known as the E/B decomposition [37]. This decomposition
is useful because scalar density perturbations in the uni-
verse, which evolve into the structures we see today via
gravitational instability, generate only E-mode polariza-

tion. Subsequent rotation of the polarization plane as the
wave propagates rotates E-mode into B-mode. Current
limits on the amplitude of B-mode polarization (see
Refs. [38–40] for some recent linear polarization measure-
ments) can be translated into limits on the total rotation of
linear polarization between the time of last scattering and
today; see Refs. [41,42] for corresponding limits on mag-
netic fields due to Faraday rotation. Precise limits on the
interaction studied here from the first-order rotation effect
Eqs. (47) and (48) can be obtained similarly, and will be
computed elsewhere. But we know that the total amount of
rotation must be small at frequencies between 50 GHz and
150 GHz where good measurements of the primordial
linear polarization have been made. Given this observatio-
nal constraint on linear polarization rotation, can some
realistic cosmological model generate detectable circular
polarization via Eqs. (59)–(61)? First, note that !QU has

dimensions of [gT], and that for this rotation to be below
current limits,

!QU ’ gT � H0; (65)

otherwise, as the microwave background photons propa-
gate a Hubble distance from last scattering until today, we
would have substantial rotation of E-mode into B-mode
polarization. We are aware of no other laboratory or theo-
retical constraints on this class of interactions.
Now note that any first order damping effects will con-

tribute an extra factor of length compared to �ðqÞ, arising
from an additional time integral over the field T�ðxÞ; if the
field is active for all times, this leads to roughly a factor of
H�1

0 . Then the time scale for exponential growth or decay

of linear polarization is, by dimensional estimate,
!QUð!QU=H0Þ, which is small compared to !QU: we

can always neglect the exponential growth or decay of
linear polarization compared to its rotation.
For generation of V polarization, !QV and !UV both

have dimensions ½g2T2=k0�, differing only by a geometric
factor related to the propagation directions of the photons
and the direction of the field T�ðxÞ. So a dimensional
estimate for both is !QV ’ !UV ’ !QUð!QU=k

0Þ. A typi-

cal microwave background photon today will have a fre-
quency of k0 ’ 100 GHz or 1011 s�1, while the
characteristic size of !QU at the observational limit is

H0, a huge mismatch in scales. So in the case considered
here, the generation of circular polarization is always
vastly subdominant to the rotation of the linear polariza-
tion, and can be neglected.
The calculation presented here demonstrates generally

that, given additional interactions beyond Compton scat-
tering, circular polarization is not necessarily zero, and
elaborates the framework for calculating it for a given
microphysical interaction. Other interactions may well
induce circular polarization without optical activity from
the linear interaction term, and for these cases circular
polarization could be the most constraining probe. We
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have also only considered a constant field T � for simplic-
ity; calculations for a nonconstant field are messier but
straightforward, involving convolutions over the field and
photon distributions. Spatial or temporal variations in the
field could change the relative importance of the optical
activity and circular polarization generation effects. In
particular, the torsion field necessarily couples to fermions
via the interaction LTF ¼ g1T �

�c��c as well as a

torsion-induced four-fermion interaction LFF ¼
g2 �c�5��c �c�5��c [43–45], where g1 and g1 are renor-

malized couplings. It would be interesting to study the
coupled system of torsion and fermions subject to our
formalism for evaluating V, since backreaction effects
from the torsion-fermion interaction could enhance the
amplitude and modify the scale of V; we leave this to
future work.

We encourage experimenters to make measurements
testing the standard lore that circular polarization of the
cosmic microwave background radiation should be identi-
cally zero, and theorists to consider the effects of any
nonstandard photon couplings on microwave background
polarization as photons propagate over cosmological
distances.
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APPENDIX A: FIRST-ORDER CALCULATION

In this appendix we determine the contribution to the
time evolution of the photon density matrix due to pro-
cesses which are first order in the interaction Hamiltonian
density Eq. (34). We first detail the calculation of the
refractive term and then the damping term of Eq. (27).
The first-order interaction Hamiltonian is simply given by

Ĥ ð1Þ
int ðtÞ ¼

Z
d3xĤ T: (A1)

In the approximation employed here, all operators in the
collision terms of Eq. (27) are from the free theory. From
this point on, all operators represent free-theory operators
and we drop the ‘‘0’’ superscript used in Sec. III. Ignoring
any processes in which two physical photons are either
annihilated or created leads to the following expression for
the interaction Hamiltonian:

1 ^̂HintðtÞ ¼ 2g
Z

d3xdpdkdk0����� ~T�ðpÞð�ik0�Þ

� ðâys ðkÞârðk0Þ��s�ðkÞ�r�ðk0Þeiðpþk�k0Þ�x

� âyr ðk0ÞâsðkÞ��r�ðk0Þ�s�ðkÞeiðpþk0�kÞ�xÞ; (A2)

where we have used the expression for Â� given in Eq. (14)

and we have used the shorthand notation

Z
dp �

Z d4p

ð2�Þ4 ;
Z

dk �
Z d3k

ð2�Þ32k0 :

Performing the spatial integral and relabeling dummy mo-
mentum variables and spacetime indices in the second term
of (A2) gives

1ĤintðtÞ ¼ �2ig
Z

dpdkdk0ð2�Þ3�ð3Þðkþ p� k0Þ
� eiðk0þp0�k00Þt����� ~T�ðpÞâys ðkÞârðk0Þ
� ��s�ðkÞðkþ k0Þ��r�ðk0Þ: (A3)

Now perform the
R
dk0 integral, after which we have

1ĤintðtÞ ¼ �2ig
Z

dpdk
~T�ðpÞeiðk0þp0�jkþpjÞt

2jkþ pj âys ðkÞârð~kÞ
� ��s�ðkÞð���0�ðjkj þ jkþ pjÞ
þ ���j�ð2kj þ pjÞÞ�r�ð~kÞ;

¼ �2ig
Z

dpdk
����� ~T�ðpÞeiðk0þp0�jkþpjÞt

2jkþ pj
� âys ðkÞârð~kÞ��s�ðkÞðkþ ~kÞ��r�ð~kÞ; (A4)

where ð~kÞ� ¼ ðjkþ pj;kþ pÞ. Equation (A4) is our first-
order interaction Hamiltonian. Now the commutator nec-
essary for the refractive term of Eq. (27) is given by

½1ĤintðtÞ; D̂uvðqÞ� ¼ �2ig
Z

dpdk
~T�ðpÞeiðk0þp0�jkþpjÞt

2jkþ pj
� ��s�ðkÞð�����ðkþ ~kÞ�Þ�r�ð~kÞ
� ð2�Þ32q0ð�ur�

3ðq� k� pÞ
� âys ðkÞâvðqÞ � �vs�

3ðq� kÞ
� âyu ðqÞârð~kÞÞ (A5)

where we have used the canonical commutation relations
between the free creation and annihilation operators
Eq. (15). Taking the expectation value of (A5) and using
the relationship between the number operator and density
matrix given by Eq. ((17), we arrive at the following
expression:

ih½1ĤintðtÞ;D̂uvðqÞ�i ¼ 2g
Z

dpdk
~T�ðpÞeiðk0þp0�jkþpjÞt

2jkþ pj
� ��s�ðkÞ�����ðkþ ~kÞ��r�ð~kÞð2�Þ6
� ð2q0Þ2�3ðq�k� pÞ�3ðq�kÞ
� ð�ur	svðqÞ ��vs	urðqÞÞ: (A6)

Perform the
R
dk integral gives
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ih½1ĤintðtÞ;D̂uvðqÞ�i ¼ 2g
Z

dp
~T�ðpÞeiðq0þp0�jqþpjÞt

4jqjjqþpj
���s�ðqÞ�����ðqþ ~qÞ��r�ð~qÞð2�Þ3
�ð2q0Þ2�3ð�pÞð�ur	svðqÞ
��vs	urðqÞÞ (A7)

where as before we have defined ð~qÞ� ¼ ðjqþ pj;qþ pÞ
so that the above can be expressed as

ih½1ĤintðtÞ; D̂uvðqÞ�i ¼ 2g��s�ðqÞð2q0Þð�ur	svðqÞ
� �vs	urðqÞÞ

Z
dpð2�Þ3�3ð�pÞ

� ~T�ðpÞeiðq0þp0�jqþpjÞt

2jqþ pj
� ð���0�ðjqj þ jqþ pjÞ þ ���j�

� ð2qj þ pjÞÞ�r�ðqþ pÞ: (A8)

Define the quantity

ð2�Þ3�3ð0ÞA��ðqÞ ¼ ð2�Þ3�3ð0ÞA½���ðqÞ;

¼
Z

dpð2�Þ3�3ð�pÞ ~T�ðpÞ
2jqþ pj

� ð���0�ðjqj þ jqþ pjÞ
þ ���j�ð2qj þ pjÞÞ; (A9)

where we have anticipated the fact that the delta-
distribution factor will be present once an appropriate
form for the external field T�ðxÞ is chosen. The refractive
term of Eq. (27) due to first-order processes can then be
expressed as

ih½1Ĥintð0Þ; D̂uvðqÞ�i ¼ 4gq0ð2�Þ3�3ð0Þ��s�ðqÞð�ur	svðqÞ
� �vs	urðqÞÞA��ðqÞ�r�ðqÞ:

(A10)

Next we consider the damping term of Eq. (26), the
integrand of which involves the double commutator

½1Ĥintðt� t0Þ; ½1ĤintðtÞ; D̂uvðqÞ�� ¼ ð2igÞ2
Z

dldpdk2dk1

~T�ðpÞeiððk1Þ0þp0�jk1þpjÞt

2jk1 þ pj
~TðlÞeiððk2Þ0þl0�jk2þljÞðt�t0Þ

2jk2 þ lj
� ��s�ðk1Þ�����ðk1 þ ~k1Þ��r�ð~k1Þ��n
ðk2Þ�
	�ðk2 þ ~k2Þ	�m�ð~k2Þð2�Þ62q0
� ð�ur�

3ðq� k1 � pÞð2ðk1Þ0�ms�
3ðk2 þ l� k1Þâyn ðk2ÞâvðqÞ

� 2q0�nv�
3ðk2 � qÞâys ðk1Þâmð~k2ÞÞ � �vs�

3ðq� k1Þð2q0�mu�
3ðk2 þ l� qÞâyn ðk2Þâr

� ð~k1Þ � 2ðk2Þ0�nr�
3ðk2 � k1 � pÞâyu ðqÞâmð~k2ÞÞÞ; (A11)

where we have used the canonical commutation relations between the free creation and annihilation operators, Eq. (15),
and have defined ð~k1Þ� ¼ ðjk1 þ pj;k1 þ pÞ and ð~k2Þ� ¼ ðjk2 þ lj;k2 þ lÞ. Now the

R
dk1 and the

R
dk2 integrals can

be performed, giving

½1Ĥintðt� t0Þ;½1ĤintðtÞ;D̂uvðqÞ��¼ð2igÞ22q0
Z
dldp ~TðlÞ�
	� ~T�ðpÞ�����

�
eiðjq�pjþp0�jqjÞt��s�ð~q�pÞð~q�pþqÞ��r�ðqÞ�ur

4jq�pjjqj

�
�
2jq�pje

iðjq�p�ljþl0�jq�pjÞðt�t0Þ

4jq�p�ljjq�pj ��n
ð~q�p�lÞð~q�p�lþ ~q�pÞ	�m�ð~q�pÞ�msâ
y
n ð~q�p�lÞ

� âvðqÞ�2q0
eiðq0þl0�jqþljÞðt�t0Þ

4jqjjqþlj ��n
ðqÞðqþ ~qþlÞ	�m�ð~qþlÞ�nvâ
y
s ð~q�pÞâmð~qþlÞ

�

�eiððqÞ0þp0�jqþpjÞt��s�ðqÞðqþ ~qþpÞ��r�ð~qþpÞ�vs

4jqþpjjqj
�
2q0

eiðjq�ljþl0�jqjÞðt�t0Þ

4jq�ljjqj

���n
ð~q�lÞð~q�lþqÞ	�m�ðqÞ�muâ
y
n ð~q�lÞârð~qþpÞ�2jqþpje

iðjqþpjþl0�jqþpþljÞðt�t0Þ

4jqþpjjqþpþlj
���n
ð~qþpÞð~qþpþ ~qþpþlÞ	�m�ð~qþpþlÞ�nrâ

y
u ðqÞâmð~qþpþlÞ

��
: (A12)

After taking the expectation value, this becomes
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h½1Ĥintðt� t0Þ; ½1ĤintðtÞ; D̂uvðqÞ��i ¼ ð2igÞ2
Z

dldp ~TðlÞ�
	� ~T�ðpÞ�����ð2�Þ3�3ðlþ pÞeiðp0þl0Þt

�
�
e�iðjqjþl0�jqþljÞt0��s�ð~qþlÞð~qþl þ qÞ��r�ðqÞ�ur

2jqþ lj ½��n
ðqÞðqþ ~qþlÞ	�m�ð~qþlÞ�ms	nv

� ðqÞ � ��n
ðqÞðqþ ~qþlÞ	�m�ð~qþlÞ�nv	smðqþ lÞ�

� e�iðjqþpjþl0�jqjÞt0��s�ðqÞðqþ ~qþpÞ��r�ð~qþpÞ�vs

2jqþ pj ½��n
ð~qþpÞð~qþp þ qÞ	�m�ðqÞ

� �mu	nrðqþ pÞ � ��n
ð~qþpÞð~qþp þ qÞ	�m�ðqÞ�nr	umðqÞ�
�
: (A13)

Interchanging l and p in the first set of terms gives

h½1Ĥintðt�t0Þ;½1ĤintðtÞ;D̂uvðqÞ��i¼ð2igÞ2
Z
dldpð2�Þ3�3ðlþpÞeiðp0þl0Þt

�
�
e�iðjqjþp0�jqþpjÞt0p�ðpÞ�
	�l��ðlÞ�������s�ð~qþpÞð~qþpþqÞ��r�ðqÞ�ur

2jqþpj
�½��n
ðqÞðqþ~qþpÞ	�m�ð~qþpÞ�ms	nvðqÞ���n
ðqÞðqþ~qþpÞ	�m�ð~qþpÞ�nv	smðqþpÞ�

�e�iðjqþpjþl0�jqjÞt0 ~TðlÞ�
	� ~T�ðpÞ�������s�ðqÞðqþ~qþpÞ��r�ð~qþpÞ�vs

2jqþpj
�½��n
ð~qþpÞð~qþpþqÞ	�m�ðqÞ�mu	nrðqþpÞ���n
ð~qþpÞð~qþpþqÞ	�m�ðqÞ�nr	umðqÞ�

�
:

(A14)

After relabeling some spacetime and polarization indices in first set of terms, the above becomes

h½1Ĥintðt� t0Þ; ½1ĤintðtÞ; D̂uvðqÞ��i ¼ ð2igÞ2
Z

dldpð2�Þ3�3ðlþ pÞeiðp0þl0Þt

�
~T�ðpÞ�
	� ~TðlÞ�������n
ð~qþpÞð~qþp þ qÞ	�m�ðqÞ��s�ðqÞðqþ ~qþpÞ��r�ð~qþpÞ

2jqþ pj
� fe�iðjqjþp0�jqþpjÞt0�um½�rn	svðqÞ � �sv	nrðqþ pÞ� � e�iðjqþpjþl0�jqjÞt0

� �vs½�mu	nrðqþ pÞ � �nr	umðqÞ�g: (A15)

Now integrate over
R
t
�t dt

0 (t ! 1) and define �q ¼ jqþ pj � jqj to arrive at

Duv �
Z 1

�1
dt0h½1Ĥintðt0Þ; ½1Ĥintð0Þ; D̂uvðqÞ��i

¼ ð2igÞ2
Z

dldp
ð2�Þ4�3ðlþ pÞ

2jqþ pj
~T�ðpÞ�
	� ~TðlÞ�����~�n
ð~qþp þ qÞ	ðqþ ~qþpÞ�~�r�f�ðp0 � �qÞ

� ½�rn�um�m��s�	svðqÞ � �um�sv�m��s�	nrðqþ pÞ� þ �ðl0 þ �qÞ½�rn�vs�m��s�	umðqÞ
� �um�sv�m��s�	nrðqþ pÞ�g; (A16)

where for convenience we have definedDuv above, as well as the abbreviations �r� ¼ �r�ðqÞ and ~�r� ¼ �r�ðqþ pÞ. Note
that since 	 is expressed in a linear polarization basis all polarization vectors above have been assumed to be real. Now in
the

R
dl integral above, the relevant factor can be simplified as

GENERATION OF CIRCULAR POLARIZATION OF THE . . . PHYSICAL REVIEW D 79, 063524 (2009)

063524-11



~�n
�m��s�~�r�
Z

dl�ðlþ pÞ ~TðlÞðqþ ~qþpÞ	�
	� ~T�ðpÞðqþ ~qþpÞ������

¼ ~�n
�m��s�~�r�f ~Tiðl0;�pÞ½jqj þ jqþ pj��
i0� � ~T0ðl0;�pÞð2qi þ piÞ�
i0�g
� f ~Tjðp0;pÞ½jqj þ jqþ pj � p0���j0� � 2 ~T0ðp0;pÞqj��j0�g;

¼ ~�n
�m��s�~�r�f ~Tiðl0;pÞ½ðjqj þ jqþ pjÞ þ l0��
i0� þ 2 ~T0ðl0;pÞqi�
i0�g
� f ~Tjðp0;pÞ½jqj þ jqþ pj � p0���j0� � 2 ~T0ðp0;pÞqj��j0�g;

where in getting to the final expression we have used p½� ~T��ðpÞ ¼ 0, the fact that �n�ðkÞ can be fixed as purely spatial for
any momentum k, and the assumed behavior of T�ðxÞ under a parity transformation, Eq. (36). Now perform the appropriate
energy integrals made trivial by the presence of delta-distributions in Eq. (A16). The relevant factor from the second term
of Eq. (A16) becomes

~�n
�m��s�~�r�
Z

dl0�ðl0 þ �qÞf ~Tiðl0;pÞ½jqj þ jqþ pj þ l0��
i0� þ 2 ~T0ðl0;pÞqi�
i0�g
� f ~Tjðp0;pÞ½jqj þ jqþ pj � p0���j0� � 2 ~T0ðp0;pÞqj��j0�g;

¼ ~�n
�m��s�~�r�f ~Tið��q;pÞ½jqj þ jqþ pj ��q��
i0� þ 2 ~T0ð��q;pÞqi�
i0�g
� f ~Tjðp0;pÞ½jqj þ jqþ pj � p0���j0� � 2 ~T0ðp0;pÞqj��j0�g;

¼ ~�n
�m��s�~�r�f�2 ~Tið�q;pÞjqj�
i0� þ 2 ~T0ð�q;pÞqi�
i0�gf ~Tjðp0;pÞ½jqj þ jqþ pj � p0���j0� � 2 ~T0ðp0;pÞqj��j0�g;
¼ ~�n
�m��s�~�r�f�2 ~Tð�q;pÞq	�
	�gf ~Tjðp0;pÞ½jqj þ jqþ pj � p0���j0� � 2 ~T0ðp0;pÞqj��j0�g; (A17)

where in arriving at the final expression above we have used the assumed behavior of T�ðxÞ under a time reversal
transformation Eq. (37). Now perform the p0 integral present in the first term of Eq. (A16) and arrive at

~�n
�m��s�~�r�
Z

dp0�ðp0 ��qÞf ~Tiðl0;pÞ½jqj þ jqþ pj þ l0��
i0� þ 2 ~T0ðl0;pÞqi�
i0�g
� f ~Tjðp0;pÞ½jqj þ jqþ pj � p0���j0� � 2 ~T0ðp0;pÞqj��j0�g

¼ ~�n
�m��s�~�r�f ~Tiðl0;pÞ½jqj þ jqþ pj þ l0��
i0� þ 2 ~T0ðl0;pÞqi�
i0�gf2 ~T�ð�q;pÞq������g:

Next change the integration variable l0 ! �p0 remaining in the first term of Eq. (A16) and the factor above becomes

~� n
�m��s�~�r�f� ~Tiðp0;pÞ½jqj þ jqþ pj � p0��
i0� þ 2 ~T0ðp0;pÞqi�
i0�gf2 ~T�ð�q;pÞq������g; (A18)

where we have again used Eq. (37). Following some relabeling of spacetime and polarization indices, the factor (A18)
becomes identical to the factor (A17). Thus Eq. (A16) can be expressed as

Duv ¼ �ð2igÞ2�m��s�
Z dp

2jqþ pj
~Tð~pÞq	�
	� ~T�ðpÞð2qþ ~pÞ������~�n
~�r�ð�nr�us	mvðqÞ þ �rn�vs	umðqÞ

� �us�mv	rnðqþ pÞ � �um�sv	nrðqþ pÞÞ; (A19)

where we have defined the 4-vector ~p ¼ ð�q;pÞ and recall that�q ¼ jqþ pj � jqj. The linear combinations necessary to
describe the evolution of the independent polarization degrees of freedom are

D11 �D22 ¼ �ð2igÞ2
Z dp

2jqþ pj
~Tð~pÞq	�
	� ~T�ðpÞð2qþ ~pÞ�fð~�1
~�1� þ ~�2
~�2�Þ½2�1��1�	11ðqÞ � 2�2��2�	22ðqÞ

þ ð�2��1� � �1��2�Þ½	12ðqÞ þ 	21ðqÞ�� � ð�1��1� � �2��2�Þ½2~�1�~�1
	11ðqþ pÞ þ 2~�2�~�2
	22ðqþ pÞ
þ ð~�1�~�2
 þ ~�2�~�1
Þ½	12ðqþ pÞ þ 	21ðqþ pÞ��g; (A20)
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D12 �D21 ¼ �ð2igÞ2
Z dp

2jqþ pj
~Tð~pÞq	�
	� ~T�ðpÞð2qþ ~pÞ�fð~�1
~�1� þ ~�2
~�2�Þ½�1��2�½	11ðqÞ � 	11ðqÞ�

þ �2��1�½	22ðqÞ � 	22ðqÞ� þ ð�1��1� þ �2��2�Þ½	12ðqÞ � 	21ðqÞ�� � ð�2��1� � �1��2�Þ
� ½~�1�~�1
½	11ðqþ pÞ � 	11ðqþ pÞ� þ ~�2�~�2
½	22ðqþ pÞ � 	22ðqþ pÞ� þ ð~�1�~�2
 � ~�1
~�2�Þ
� ½	12ðqþ pÞ � 	21ðqþ pÞ��g: (A21)

If we define the quantity

ð2�Þ3�ð3Þð0ÞB��
1 ðqÞ �

Z dp

2jqþ pj
~Tð~pÞq	�
	� ~T�ðpÞ

� ð2qþ ~pÞ������~�n
�nr~�r�

(A22)

and the integral operator

ð2�Þ3�ð3Þð0ÞB2½q;	uv� � �m��s�
Z dp

2jqþ pj
~Tð~pÞq	

� �
	� ~T�ðpÞð2qþ ~pÞ�
� �����~�n
~�r�

� ð�us�mv	rnðqþ pÞ
þ �um�sv	nrðqþ pÞÞ; (A23)

Equation (A19) can be expressed in the general form

Duv ¼ �ð2igÞ2ð2�Þ3�ð3Þð0Þf�m�ð�u�	m�ðqÞ
þ �v�	umðqÞÞB��

1 ðqÞ �B2½q;	uvðqÞ�g: (A24)

APPENDIX B: SECOND-ORDER CALCULATION

In this Appendix we explicitly calculate the relevant
quantities describing the evolution of the photon density
matrix due to processes which are second order in the
interaction Hamiltonian Eq. (34). The second-order scat-
tering matrix operator is

Ŝð2Þ ¼ � 1

2

Z 1

�1
dt

Z 1

�1
dt0TfĤð1Þ

int ðtÞĤð1Þ
int ðt0Þg;

� �i
Z 1

�1
dtĤð2Þ

int ðtÞ; (B1)

where Ĥð1Þ
int ðtÞ is the first-order interaction Hamiltonian,

Eq. (A1). We will denote the interaction Hamiltonian
operator which has a nonzero overlap with a single photon
lying in both the initial and final scattering states as
2HintðtÞ. Applying Wick’s theorem to simplify the time

ordered product in Eq. (B1) gives (ignoring vacuum terms)

(B2)

where all partial derivatives are understood as acting solely
on the function immediately to the right; the variable being
differentiated is in the argument of this function. We
denote the contraction of two operators Â and B̂ by

To simplify Eq. (B2), we use the free-theory photon propa-
gator in the Feynman gauge,

D��ðx� yÞ ¼
Z d4k

ð2�Þ4
�ig��e

�ik�ðx�yÞ

k2 þ i�
: (B3)

(See Appendix C below for a demonstration of gauge

invariance, where we explicitly consider a different
gauge-fixed photon propagator). In order to deal with the
derivative couplings, we interpret the time ordering as T�
ordering; specifically, we require that derivative couplings
act outside of the time ordering operation [46]. For conve-
nience, define the operators

Âþ
�ðx; pÞ ¼ âsðpÞ�s�ðpÞe�ip�x; (B4)

Â�
�ðx; pÞ ¼ âys ðpÞ��s�ðpÞeip�x: (B5)

Equation (B2) then becomes
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�iĤð2ÞðtÞ ¼ � 1

2
ð2gÞ2

Z
d3xd4y

Z d4k

ð2�Þ4
d3p1

ð2�Þ32p0
1

d3p2

ð2�Þ32p0
2

������	
�T�ðxÞT
ðyÞ
��ie�ik�ðx�yÞ

k2 þ i�

�

:½g�	ð�ip1�ÞðAþ
� ðx; p1Þ � A�

� ðx; p1ÞÞð�ip2ÞðAþ
� ðy; p2Þ � A�

� ðy; p2ÞÞ þ ðikÞg��ð�ip1�ÞðAþ
� ðx; p1Þ

� A�
� ðx; p1ÞÞðAþ

	 ðy; p2Þ þ A�
	 ðy; p2ÞÞ þ ð�ik�Þg�	ðAþ

�ðx; p1Þ þ A�
�ðx; p1ÞÞð�ip2ÞðAþ

� ðy; p2Þ � A�
� ðy; p2ÞÞ

þ ð�ik�ÞðikÞg��ðAþ
�ðx; p1Þ þ A�

�ðx; p1ÞÞðAþ
	 ðy; p2Þ þ A�

	 ðy; p2ÞÞ�:: (B6)

Picking out the nonvanishing overlap of Ĥð2ÞðtÞ on single-photon initial and final scattering states and calling this 2ĤintðtÞ
gives

2ĤintðtÞ ¼ � i

2
ð2gÞ2

Z
d3xd4y

Z
dkdp1dp2�

�����	
�T�ðxÞT
ðyÞ
��ie�ik�ðx�yÞ

k2 þ i�

�
½g�	ð�ip1�Þð�ip2Þ

� ð�Â�
� ðy;p2ÞÂþ

� ðx;p1Þ � Â�
� ðx;p1ÞÂþ

� ðy;p2ÞÞþ g��ðikÞð�ip1�ÞðÂ�
	 ðy;p2ÞÂþ

� ðx;p1Þ � Â�
� ðx;p1ÞÂþ

	 ðy;p2ÞÞ
þ g�	ð�ik�Þð�ip2Þð�Â�

� ðy;p2ÞÂþ
�ðx;p1Þ þ Â�

�ðx;p1ÞÂþ
� ðy;p2ÞÞ þ g��ð�ik�ÞðikÞðÂ�

	 ðy;p2ÞÂþ
�ðx;p1Þ

þ Â�
�ðx;p1ÞÂþ

	 ðy;p2ÞÞ�; (B7)

where we have again used the shorthand notation for the integral measures defined in Appendix A After some relabeling of
spacetime indices, Eq. (B7) becomes

2ĤintðtÞ ¼ � i

2
ð2gÞ2

Z
d3xd4y

Z
dkdp1dp2�

�����	
�T�ðxÞT
ðyÞð�ig�	Þ
��

e�ik�ðx�yÞ

k2 þ i�

�
ðp1�ðp2 � kÞ

� k�ðp2 � kÞÞÂ�
� ðy; p2ÞÂþ

� ðx; p1Þ þ
�
e�ik�ðy�xÞ

k2 þ i�

�
ðp1�ðp2 � kÞ � k�ðp2 � kÞÞÂ�

� ðx; p1ÞÂþ
� ðy; p2Þ

�
; (B8)

using the property D��ðx� yÞ ¼ D��ðy� xÞ. Now plug in the Eqs. (B4) and (B5), express T�ðxÞ in terms of its Fourier
transform, and perform the

R
dx and

R
dy integrals to get

2ĤintðtÞ ¼ � ið2�Þ7
2

ð2gÞ2
Z

dkdp1dp2

������	
� ~T�ðl1Þ ~T
ðl2Þ
k2 þ i�

ð�ig�	Þðp1�ðp2 � kÞ � k�ðp2 � kÞÞ
� ½e�iððp1Þ0�ðl1Þ0þk0Þt�3ðp1 � lþ kÞ�4ðp2 þ l2 þ kÞ��s�ðp2Þ�r�ðp1Þâys ðp2Þârðp1Þ
þ eiððp1Þ0þl0

1
þk0Þt�3ðp1 þ lþ kÞ�4ðp2 � l2 þ kÞ��s�ðp1Þ�r�ðp2Þâys ðp1Þârðp2Þ�: (B9)

Next perform the k integral:

2ĤintðtÞ ¼ � ið2�Þ3
2

ð2gÞ2
Z

dp1dp2dl1dl2�
�����	
� ~T�ðl1Þ ~T
ðl2Þð�ig�	Þ

�
ððp1 þ p2 þ l2Þ�ð2p2 þ l2ÞÞ

� e�iððp1Þ0�ðl1Þ0�ðp2Þ0�ðl2Þ0Þt�3ðp1 � l� p2 � lÞ �
�
s�ðp2Þ�s�ðp1Þâys ðp2Þârðp1Þ

ðp2 þ l2Þ2 þ i�

þ ððp1 þ p2 � l2Þ�ð2p2 � l2ÞÞeiððp1Þ0þl0
1
�ðp2Þ0þl0

2
Þt�3ðp1 þ l� p2 þ lÞ �

�
s�ðp1Þ�r�ðp2Þâys ðp1Þârðp2Þ

ðp2 � l2Þ2 þ i�

�
: (B10)

We are now in the position to compute the commutator of 2ĤintðtÞ and D̂uvðqÞ necessary for the refractive term of
Eq. (27). This is given by

STEPHON ALEXANDER, JOSEPH OCHOA, AND ARTHUR KOSOWSKY PHYSICAL REVIEW D 79, 063524 (2009)

063524-14



½2ĤintðtÞ; D̂uvðqÞ� ¼ � ið2�Þ3
2

ð2gÞ2
Z

dp1dp2dl1dl2�
�����	
� ~T�ðl1Þ ~T
ðl2Þð�ig�	Þeiðl01þl0

2
Þt

�
�
ððp1 þ p2 þ l2Þ�ð2p2 þ l2ÞÞe�iððp1Þ0�ðp2Þ0Þt�3ðp1 � l� p2 � lÞ �

�
s�ðp2Þ�s�ðp1Þ

ðp2 þ l2Þ2 þ i�
ð2�Þ32q0

� ð�3ðq� p1Þ�urâ
y
s ðp2ÞâvðqÞ � �3ðq� p2Þ�vsâ

y
u ðqÞârðp1ÞÞ þ ððp1 þ p2 � l2Þ�ð2p2 � l2ÞÞ

� eiððp1Þ0�ðp2Þ0Þt�3ðp1 þ l� p2 þ lÞ �
�
s�ðp1Þ�r�ðp2Þ

ðp2 � l2Þ2 þ i�
ð2�Þ32q0ð�3ðq� p2Þ�urâ

y
s ðp1ÞâvðqÞ

� �3ðq� p1Þ�vsâ
y
u ðqÞârðp2ÞÞ

�
: (B11)

Take the expectation value of Eq. (B11) above to get

h½2ĤintðtÞ; D̂uvðqÞ�i ¼ � ið2�Þ3
2

ð2gÞ2
Z

dp1dp2dl1dl2�
�����	
� ~T�ðl1Þ ~T
ðl2Þð�ig�	Þeiðl01þl0

2
Þtð2�Þ6ð2q0Þ2�3ðq� p1Þ

� �3ðp2 � q Þ�3ðp1 þ l� p2 þ lÞð�ur	svðqÞ � �vs	urðqÞÞ
�
ðp1 þ p2 � l2Þ�ð2p2 � l2Þ

� e�iððp1Þ0�ðp2Þ0Þt �
�
s�ðp2Þ�s�ðp1Þ

ðp2 þ l2Þ2 þ i�
þ ðp1 þ p2 � l2Þ�ð2p2 � l2ÞÞeiððp1Þ0�ðp2Þ0Þt �

�
s�ðp1Þ�r�ðp2Þ

ðp2 � l2Þ2 þ i�

�
:

(B12)

Now perform the p1 and p2 integrals, giving

h½2ĤintðtÞ; D̂uvðqÞ�i ¼ � ið2�Þ3
2

ð2gÞ2
Z

dl1dl2�
3ðlþ lÞ������	
� ~T�ðl1Þ ~T
ðl2Þð�ig�	Þeiðl01þl0

2
Þtð�ur	svðqÞ

� �vs	urðqÞÞ
�
ð2qþ l2Þ�ð2qþ l2Þ

��s�ðqÞ�s�ðqÞ
ðqþ l2Þ2 þ i�

þ ð2q� l2Þ�ð2q� l2Þ
��s�ðqÞ�r�ðqÞ
ðq� l2Þ2 þ i�

�
:

(B13)

Focus now on the following factors present in Eq. (B13):

�������

� ~T�ðl1Þ ~T
ðl2Þ��s�ðqÞ�r�ðqÞð2q� l2Þ�ð2q� l2Þ ¼ 2�������


� ~T�ðl1Þ ~T
ðl2Þ��s�ðqÞ�r�ðqÞð2q� l2Þ�q;

where we have used l½ ~T
�ðlÞ ¼ 0 in arriving at the expression on the right. Now use the epsilon identity �������
� ¼
�6�½�


 ��
�

��
� to perform the contractions above and arrive at

� 2ð½ ~T1 � ~T2�½ð2q� l2Þ � q�½�r � �s� � ½ ~T2 � ~T1�½�r � q�½ð2q� l2Þ � �s� þ ½ ~T2 � �r�½ð2q� l2Þ � �s�½ ~T1 � q�
� ½ ~T2 � �r�½ð2q� l2Þ � q�½�s � ~T1� þ ½ð2q� l2Þ � ~T2�½q � �r�½ ~T1 � �s� � ½ ~T2 � ð2q� l2Þ�½ ~T1 � q�½�r � �s�Þ:

(B14)

To simplify this, use �r � �s ¼ ��rs, which when contracted with ð�ur	svðqÞ � �vs	urðqÞÞ in Eq. (B13) vanishes, as well
as �rðqÞ � q ¼ 0 and q � q ¼ 0. The remaining terms from the expression (B14) then become

	 2½ ~Tðl02; lÞ � �r��s�q�ððl2Þ� ~T�ðl01;�lÞ � ðl2Þ� ~T�ðl01;�lÞÞ ¼ �2½ ~Tðl02; lÞ � �r��siq0ððl2Þi ~T0ðl01; lÞ þ ðl2Þ0 ~Tiðl01; lÞÞ
¼ �2½ ~Tðl02; lÞ � �r��si ~Tiðl01; lÞq0ðl01 þ l02Þ;

where we have used Eq. (36) as well as repeated use of l½ ~T
�ðlÞ ¼ 0. Inserting this expression back into Eq. (B13), we
have
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h½2ĤintðtÞ; D̂uvðqÞ�i ¼ �ð2�Þ3ð2gÞ2ð�ur	svðqÞ � �vs	urðqÞÞ
Z

dl1dl2�
3ðlþ lÞeiðl01þl0

2
Þt½�r � ~Tðl02; lÞ�½ ~Tðl01; lÞ � �s�

� ½q � ðl1 þ l2Þ�
�

1

ðl2Þ2 þ 2l2 � qþ i�
� 1

ðl2Þ2 � 2l2 � qþ i�

�
: (B15)

We now define a quantity T ij by

ð2�Þ3�3ð0ÞT ijðqÞ ¼ �
Z

dl1dl2ð2�Þ3�3ðlþ lÞ ~Tjðl02; lÞ
� ~Tiðl01; lÞ½q � ðl1 þ l2Þ�
�

�
1

ðl2Þ2 þ 2l2 � qþ i�

� 1

ðl2Þ2 � 2l2 � qþ i�

�
: (B16)

Equation (B15) can be expressed conveniently in terms of
this quantity:

ih½2Ĥintð0Þ; D̂uvðqÞ�i ¼ ið2�Þ3�3ð0Þð2gÞ2ð�ur	svðqÞ
� �vs	urðqÞÞ��s ðqÞ��r ðqÞT ��ðqÞ;

(B17)

where we have exploited the fact that �isðqÞ�jrðqÞT ijðqÞ ¼
��s ðqÞ��r ðqÞT ��ðqÞ since �ðqÞ is purely spatial. Explicitly,
the components of ih½2ĤintðtÞ; D̂uvðqÞ�i are given by

ih½2ĤintðtÞ; D̂11ðqÞ�i ¼ ið2�Þ3�3ð0Þð2gÞ2T ��ðqÞ
� ð��

�
1 ðqÞ��2ðqÞ	12ðqÞ

þ ��2 ðqÞ��1ðqÞ	21ðqÞÞ; (B18)

ih½2ĤintðtÞ; D̂12ðqÞ�i ¼ ið2�Þ3�3ð0Þð2gÞ2T ��ðqÞ
� ð½��1 ðqÞ��1ðqÞ � �

�
2 ðqÞ��2ðqÞ�

� 	12ðqÞ � �
�
2 ðqÞ��1ðqÞ½	11ðqÞ

� 	22ðqÞ�Þ; (B19)

ih½2ĤintðtÞ; D̂21ðqÞ�i ¼ ið2�Þ3�3ð0Þð2gÞ2T ��ðqÞ
� ð�½��1 ðqÞ��1ðqÞ
� ��2ðqÞ��2 ðqÞ�	21ðqÞ
þ ��1 ðqÞ��2ðqÞ½	11ðqÞ � 	22ðqÞ�Þ;

(B20)

ih½2ĤintðtÞ; D̂22ðqÞ�i ¼ ið2�Þ3�3ð0Þð2gÞ2T ��ðqÞ
� ð��1 ðqÞ��2ðqÞ	12ðqÞ
� �

�
2 ðqÞ��1ðqÞ	21ðqÞÞ: (B21)

APPENDIX C: GAUGE INVARIANCE

Here we verify that the calculation in Appendix B is
gauge-invariant by explicitly using a different gauge-fixed
photon propagator, namely

D��ðx� yÞ ¼
Z d4k

ð2�Þ4
�ie�ik�ðx�yÞ

k2 þ i�

�
�
g�� � ð1� �Þ k�k�

k2

�
:

(C1)

Isolating the contribution to h½2ĤintðtÞ; D̂uvðqÞ�i due to the
term linear in ð1� �Þ gives

h½2ĤintðtÞ�; D̂uvðqÞ�i ¼ � ið2�Þ3
2

ð2gÞ2
Z

dl1dl2�
3ðlþ lÞ������	
� ~T�ðl1Þ ~T
ðl2Þðið1� �ÞÞeiðl01þl0

2
Þtð�ur	svðqÞ

� �vs	urðqÞÞ
�ðqþ l2Þ�ðqþ l2Þ	

ðqþ l2Þ2
ðqþ qþ l2Þ�ðqþ qþ l2Þ

��s�ðqÞ�s�ðqÞ
ðqþ l2Þ2 þ i�

þ ðq� l2Þ�ðq� l2Þ	
ðq� l2Þ2

ðqþ q� l2Þ�ðqþ q� l2Þ
��s�ðqÞ�r�ðqÞ
ðq� l2Þ2 þ i�

�
; (C2)

where we have performed all the integrals similar to those in arriving at Eq. (B13). Simplify the above by making repeated
use of the antisymmetry of the epsilon tensor:

STEPHON ALEXANDER, JOSEPH OCHOA, AND ARTHUR KOSOWSKY PHYSICAL REVIEW D 79, 063524 (2009)

063524-16



h½2ĤintðtÞ�; D̂uvðqÞ�i ¼ � ið2�Þ3
2

ð2gÞ2
Z

dl1dl2�
3ðlþ lÞ������	
� ~T�ðl1Þ ~T
ðl2Þðið1� �ÞÞeiðl01þl0

2
Þtð�ur	svðqÞ

� �vs	urðqÞÞ
�ðqþ l2Þ�ðqþ l2Þ	

ðqþ l2Þ2
q�q

��s�ðqÞ�s�ðqÞ
ðqþ l2Þ2 þ i�

þ ðq� l2Þ�ðq� l2Þ	
ðq� l2Þ2

q�q
��s�ðqÞ�r�ðqÞ
ðq� l2Þ2 þ i�

�
;

¼ � ið2�Þ3
2

ð2gÞ2
Z

dl1dl2�
3ðlþ lÞ������	
� ~T�ðl1Þ ~T
ðl2Þðið1� �ÞÞeiðl01þl0

2
Þtð�ur	svðqÞ

� �vs	urðqÞÞ
�ðl2Þ�ðl2Þ	
ðqþ l2Þ2

q�q
��s�ðqÞ�s�ðqÞ
ðqþ l2Þ2 þ i�

þ ðl2Þ�ðl2Þ	
ðq� l2Þ2

q�q
��s�ðqÞ�r�ðqÞ
ðq� l2Þ2 þ i�

�
;

¼ � ið2�Þ3
2

ð2gÞ2
Z

dl1dl2�
3ðlþ lÞðið1� �ÞÞð�ur	svðqÞ � �vs	urðqÞÞeiðl01þl0

2
Þtð�����ðl2Þ� ~T�ðl1Þq�Þ

� ð�	
�ðl2Þ	 ~T
ðl2ÞqÞ
�

��s�ðqÞ�s�ðqÞ
ðqþ l2Þ2ðqþ l2Þ2 þ i�

þ ��s�ðqÞ�r�ðqÞ
ðq� l2Þ2ðq� l2Þ2 þ i�

�
;

¼ 0:

This expression vanishes because �	
�ðl2Þ	 ~T
ðl2Þ ¼ 0, as we have required in order to arrive at Eq. (B15). Therefore, the
final evolution equations for the photon density matrix 	 will indeed be independent of the gauge parameter �.
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