24 research outputs found

    QUASI FROBENIUS LIE ALGEBRAS CONSTRUCTION OF N=4 SUPERCONFORMAL FIELD THEORIES

    Get PDF
    Manin triple construction of N=4 superconformal field theories is considered. The correspondence between quasi Frobenius finite-dimensional Lie algebras and N=4 superconformal field theories is established.Comment: 20 pages, PLAINTE

    Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology

    Get PDF
    notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations

    Hybrid Modeling and Simulation of Biomolecular Networks

    No full text
    In a biological cell, cellular functions and the genetic regulatory apparatus are implemented and controlled by a network of chemical reactions in which regulatory proteins can control genes that produce other regulators, which in turn control other genes. Further, the feedback pathways appear to incorporate switches that result in changes in the dynamic behavior of the cell. This paper describes a hybrid systems approach to modeling the intra-cellular network using continuous di#erential equations to model the feedback mechanisms and mode-switching to describe the changes in the underlying dynamics. We use two case studies to illustrate a modular approach to modeling such networks and describe the architectural and behavioral hierarchy in the underlying models. We describe these models using Charon [2], a language that allows formal description of hybrid systems. We provide preliminary simulation results that demonstrate how our approach can help biologists in their analysis of noisy genetic circuits. Finally we describe our agenda for future work that includes the development of models and simulation for stochastic hybrid systems
    corecore