51 research outputs found

    Abnormal phase discontinuity of alpha- and theta-frequency oscillations in schizophrenia.

    No full text
    BACKGROUND: Schizophrenia patients have abnormal electroencephalographic (EEG) power over multiple frequency bands, even at rest, though the primary neural generators and spatiotemporal dynamics of these abnormalities are largely unknown. Disturbances in the precise synchronization of oscillations within and across cortical sources may underlie abnormal resting-state EEG activity in schizophrenia patients. METHODS: A novel assessment method was applied to identify the independent contributing sources of resting-state EEG and assess the phase discontinuity in schizophrenia patients (N = 148) and healthy subjects (N = 143). RESULTS: A network of 11 primary contributing sources of scalp EEG was identified in both groups. Schizophrenia patients showed abnormal elevations of EEG power in the temporal region in the theta, beta, and gamma-bands, as well as the posterior cingulate gyrus in the delta, theta, alpha, and beta-bands. The higher theta-band power in the middle temporal gyrus was significantly correlated with verbal memory impairment in patients. The peak frequency of alpha was lower in patients in the cingulate and temporal regions. Furthermore, patients showed a higher rate of alpha phase discontinuity in the temporal region as well as a lower rate of theta phase discontinuity in the temporal and posterior cingulate regions. CONCLUSIONS: Abnormal rates of phase discontinuity of alpha- and theta-band, abnormal elevations of EEG power in multiple bands, and a lower peak frequency of alpha were identified in schizophrenia patients at rest. Clarification of the mechanistic substrates of abnormal phase discontinuity may clarify core pathophysiologic abnormalities of schizophrenia and contribute to the development of novel biomarkers for therapeutic interventions

    Sources of the frontocentral mismatch negativity and P3a responses in schizophrenia patients and healthy comparison subjects

    No full text
    BackgroundMismatch negativity (MMN) and P3a are event-related potential measures of early auditory information processing that are increasingly used as translational biomarkers in the development of treatments for neuropsychiatric disorders. These responses are reduced in schizophrenia patients over the frontocentral scalp electrodes and are associated with important domains of cognitive and psychosocial functioning. While MMN and P3a responses are generated by a dynamic network of cortical sources distributed across the temporal and frontal brain regions, it is not clear how these sources independently contribute to MMN and P3a at the primary frontocentral scalp electrode or to abnormalities observed in schizophrenia. This study aimed to determine the independent source contributions and characterize the magnitude of impairment in source-level MMN and P3a responses in schizophrenia patients.MethodsA novel method was applied to back-project the contributions of 11 independent cortical source components to Fz, the primary scalp sensor that is used in clinical studies, in n = 589 schizophrenia patients and n = 449 healthy comparison subjects.ResultsThe groups showed comparable individual source contributions underlying both MMN and P3a responses at Fz. Source-level responses revealed an increasing magnitude of impairment in schizophrenia patients from the temporal to more frontal sources.ConclusionsSchizophrenia patients have a normal architecture of source contributions that are accompanied by widespread abnormalities in source resolved mismatch and P3a responses, with more prominent deficits detected from the frontal sources. Quantification of source contributions and source-level responses accelerates clarification of the neural networks underlying MMN reduction at Fz in schizophrenia patients
    corecore