626 research outputs found

    On temperature-dependent anisotropies of upper critical field and London penetration depth

    Get PDF
    We show on a few examples of one-band materials with spheroidal Fermi surfaces and anisotropic order parameters that anisotropies γH\gamma_H of the upper critical field and γλ\gamma_\lambda of the London penetration depth depend on temperature, the feature commonly attributed to multi-band superconductors. The parameters γH\gamma_H and γλ\gamma_\lambda may have opposite temperature dependencies or may change in the same direction depending on Fermi surface shape and on character of the gap nodes. For two-band systems, the behavior of anisotropies is affected by the ratios of bands densities of states, Fermi velocities, anisotropies, and order parameters. We investigate in detail the conditions determining the directions of temperature dependences of the two anisotropy factors

    Thermal Suppression of Strong Pinning

    Full text link
    We study vortex pinning in layered type-II superconductors in the presence of uncorrelated disorder for decoupled layers. Introducing the new concept of variable-range thermal smoothing, we describe the interplay between strong pinning and thermal fluctuations. We discuss the appearance and analyze the evolution in temperature of two distinct non-linear features in the current-voltage characteristics. We show how the combination of layering and electromagnetic interactions leads to a sharp jump in the critical current for the onset of glassy response as a function of temperature.Comment: LaTeX 2.09, 4 pages, 2 figures, submitted to Phys. Rev. Let

    Temporal dynamic of the phylogenetic diversity of the bird community of agricultural lands in Ukrainian steppe drylands

    Get PDF
    This study discussed the importance of the phylogenetic components in the structure of bird communities of anthropogenically transformed ecosystems. The investigation was conducted in the landscapes of the south and south-east of Ukraine in the nesting seasons 1988–2018. The bird community in the agricultural landscape was found to be presented by 10 species. The number of species was closely correlated with its phylogenetic analogue – Faith’s index. Both indices were stationary over time, as they do not show a statistically significant time trend. The two axes were extracted as a result of the DPCOA procedure and the permutation test showed their statistical significance. The axis 1 was the most sensitive to the opposite dynamics of the abundance of Coturnix coturnix and Burhinus oedicnemus on the one hand and Alauda arvensis and Melanocorypha calandra on the other. The axis 2 is the most sensitive to the opposite dynamics of Corvus monedula and Melanocorypha calandra on the one hand and Coturnix coturnix and Motacilla flava on the other. Based on phylogenetic diversity, the years can be clustered with the extraction of four relatively homogeneous phylogenetic structures of bird communities. The indicator of the initial period of dynamics (1988–1992) was Burhinus oedicnemus. Sowing or mechanical weeding may be considered as a major factor of nest destruction of Burhinus oedicnemus. The decreasing of the abundance of the trophic recourses because of agricultural activity may have caused the monotonous negative trend over time of the Burhinus oedicnemus populations. The period 1993–2003 was a transitional one, for which there were no clear indicators, as a characteristic feature of this period was the processes of bird community restructuring. The period 2004–2013 was characterized by the loss of Burhinus oedicnemus from the community and a sharp increase in the abundance of Corvus monedula. These species are distinguished by their phylogenetic specificity and are located on the periphery relative to the phylogenetic core of the community. There was growing importance in the community of such species as Alauda arvensis, Anthus campestris, and Melanocorypha calandra between 2014 and 2018. Our results also confirm the assumption that phylogenetic overdispersion is an important requirement for the stability of the bird community in anthropogenically transformed landscapes

    Evidence for LineLike Vortex Liquid Phase in Tl2_2Ba2_2CaCu2_2O8_8 Probed by the Josephson Plasma Resonance

    Full text link
    We measured the Josephson plasma resonance (JPR) in optimally doped Tl2_2Ba2_2CaCu2_2O8+δ_{8+\delta} thin films using terahertz time-domain spectroscopy in transmission. The temperature and magnetic field dependence of the JPR frequency shows that the c-axis correlations of pancake vortices remain intact at the transition from the vortex solid to the liquid phase. In this respect Tl2_2Ba2_2CaCu2_2O8+δ_{8+\delta} films, withanisotropy parameter γ150\gamma\approx 150, are similar to the less anisotropic YBa2_2Cu3_3O7δ_{7-\delta} (γ8)(\gamma\approx 8) rather than to the most anisotropic Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} single crystals γ500\gamma\geq 500).Comment: Submitted to Physical Review Letter

    Plasma resonance at low magnetic fields as a probe of vortex line meandering in layered superconductors

    Full text link
    We consider the magnetic field dependence of the plasma resonance frequency in pristine and in irradiated Bi2_2Sr2_2CaCu2_2O8_8 crystals near TcT_c. At low magnetic fields we relate linear in field corrections to the plasma frequency to the average distance between the pancake vortices in the neighboring layers (wandering length). We calculate the wandering length in the case of thermal wiggling of vortex lines, taking into account both Josephson and magnetic interlayer coupling of pancakes. Analyzing experimental data, we found that (i) the wandering length becomes comparable with the London penetration depth near Tc_{c} and (ii) at small melting fields (<20< 20 G) the wandering length does not change much at the melting transition. This shows existence of the line liquid phase in this field range. We also found that pinning by columnar defects affects weakly the field dependence of the plasma resonance frequency near TcT_c.Comment: RevTex, 4 pages, 2 PS figures, Submitted to Phys. Rev.

    Microscopic theory of thermal phase slips in clean narrow superconducting wires

    Full text link
    We consider structure of a thermal phase-slip center for a simple microscopic model of a clean one-dimensional superconductors in which superconductivity occurs only within one conducting channel or several identical channels. Surprisingly, the Eilenberger equations describing the saddle-point configuration allow for exact analytical solution in the whole temperature and current range. This solution allows us to derive a closed expression for the free-energy barrier, which we use to compute its temperature and current dependences

    Thermal conductivity in a mixed state of a superconductor at low magnetic fields

    Get PDF
    We evaluate accurate low-field/low-temperature asymptotics of the thermal conductivity perpendicular to magnetic field for one-band and two-band s-wave superconductors using Keldysh-Usadel formalism. We show that heat transport in this regime is limited by tunneling of quasiparticles between adjacent vortices across a number of local points and therefore widely-used approximation of averaging over circular unit cell is not valid. In the single-band case, we obtain parameter-free analytical solution which provides theoretical lower limit for heat transport in the mixed state. In the two-band case, we show that heat transport is controlled by the ratio of gaps and diffusion constants in different bands. Presence of a weaker second band strongly enhances the thermal conductivity at low fieldsComment: 7 pages, 1 figure, discussion of the clean case and discussion of experiment adde
    corecore