71 research outputs found

    Lipoprotein(a) is associated differentially with carotid stenosis, occlusion, and total plaque area

    Get PDF
    Background - Lipoprotein(a) [Lp(a)] is a putative risk factor for myocardial infarction and stroke and is related to thrombosis and impaired fibrinolysis. We studied relationships of Lp(a) with carotid stenosis, occlusion, and total plaque area, distinct phenotypes of atherosclerosis that may be differentially affected by cardiovascular risk factors. Methods and Results - Multivariable linear regression analysis was used to study relationships of Lp(a) to phenotypes of carotid atherosclerosis among 876 consecutive patients from an atherosclerosis prevention clinic with complete data for all variables used in the model. Occlusion of an internal carotid artery was present in 22 (2.5%) patients (one with bilateral occlusions). Risk factors predicted carotid plaque area, stenosis, and occlusion differently. Lp(a) was a significant independent predictor of baseline stenosis (P\u3c0.0001) but not of plaque area (P=0.13); in logistic regression, Lp(a) significantly predicted occlusion (P=0.001). Patients with occlusion had significantly higher levels of Lp(a): 0.27±0.25 g/L versus 0.17±0.18 g/L without occlusion; P=0.007. Conclusion - Lp(a) was a significant independent predictor of carotid stenosis and occlusion, but not of carotid plaque area, supporting the hypothesis that the effect of Lp(a) on atherogenesis and cardiovascular risk is largely related to thrombosis and impaired fibrinolysis. Stenosis and occlusion may not be attributable to plaque progression, but to plaque rupture and thrombosis; this relationship may also apply to other arterial beds. © 2008 American Heart Association, Inc

    Lipoprotein(a) induces caspase-1 activation and IL-1 signaling in human macrophages

    Get PDF
    IntroductionLipoprotein(a) (Lp(a)) is an LDL-like particle with an additional apolipoprotein (apo)(a) covalently attached. Elevated levels of circulating Lp(a) are a risk factor for atherosclerosis. A proinflammatory role for Lp(a) has been proposed, but its molecular details are incompletely defined.Methods and resultsTo explore the effect of Lp(a) on human macrophages we performed RNA sequencing on THP-1 macrophages treated with Lp(a) or recombinant apo(a), which showed that especially Lp(a) induces potent inflammatory responses. Thus, we stimulated THP-1 macrophages with serum containing various Lp(a) levels to investigate their correlations with cytokines highlighted by the RNAseq, showing significant correlations with caspase-1 activity and secretion of IL-1β and IL-18. We further isolated both Lp(a) and LDL particles from three donors and then compared their atheroinflammatory potentials together with recombinant apo(a) in primary and THP-1 derived macrophages. Compared with LDL, Lp(a) induced a robust and dose-dependent caspase-1 activation and release of IL-1β and IL-18 in both macrophage types. Recombinant apo(a) strongly induced caspase-1 activation and IL-1β release in THP-1 macrophages but yielded weak responses in primary macrophages. Structural analysis of these particles revealed that the Lp(a) proteome was enriched in proteins associated with complement activation and coagulation, and its lipidome was relatively deficient in polyunsaturated fatty acids and had a high n-6/n-3 ratio promoting inflammation.DiscussionOur data show that Lp(a) particles induce the expression of inflammatory genes, and Lp(a) and to a lesser extent apo(a) induce caspase-1 activation and IL-1 signaling. Major differences in the molecular profiles between Lp(a) and LDL contribute to Lp(a) being more atheroinflammatory

    Atherogenic Lipoprotein(a) Increases Vascular Glycolysis, Thereby Facilitating Inflammation and Leukocyte Extravasation

    Get PDF
    Rationale: Patients with elevated levels of lipoprotein(a) [Lp(a)] are hallmarked by increased metabolic activity in the arterial wall on positron emission tomography/computed tomography, indicative of a proinflammatory state. Objective: We hypothesized that Lp(a) induces endothelial cell inflammation by rewiring endothelial metabolism. Methods and Results: We evaluated the impact of Lp(a) on the endothelium and describe that Lp(a), through its oxidized phospholipid content, activates arterial endothelial cells, facilitating increased transendothelial migration of monocytes. Transcriptome analysis of Lp(a)-stimulated human arterial endothelial cells revealed upregulation of inflammatory pathways comprising monocyte adhesion and migration, coinciding with increased 6-phophofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB)-3-mediated glycolysis. ICAM (intercellular adhesion molecule)-1 and PFKFB3 were also found to be upregulated in carotid plaques of patients with elevated levels of Lp(a). Inhibition of PFKFB3 abolished the inflammatory signature with concomitant attenuation of transendothelial migration. Conclusions: Collectively, our findings show that Lp(a) activates the endothelium by enhancing PFKFB3-mediated glycolysis, leading to a proadhesive state, which can be reversed by inhibition of glycolysis. These findings pave the way for therapeutic agents targeting metabolism aimed at reducing inflammation in patients with cardiovascular disease

    Lipoprotein(a) in atherosclerotic cardiovascular disease and aortic stenosis: a European Atherosclerosis Society consensus statement

    Full text link
    This 2022 European Atherosclerosis Society lipoprotein(a) [Lp(a)] consensus statement updates evidence for the role of Lp(a) in atherosclerotic cardiovascular disease (ASCVD) and aortic valve stenosis, provides clinical guidance for testing and treating elevated Lp(a) levels, and considers its inclusion in global risk estimation. Epidemiologic and genetic studies involving hundreds of thousands of individuals strongly support a causal and continuous association between Lp(a) concentration and cardiovascular outcomes in different ethnicities; elevated Lp(a) is a risk factor even at very low levels of low-density lipoprotein cholesterol. High Lp(a) is associated with both microcalcification and macrocalcification of the aortic valve. Current findings do not support Lp(a) as a risk factor for venous thrombotic events and impaired fibrinolysis. Very low Lp(a) levels may associate with increased risk of diabetes mellitus meriting further study. Lp(a) has pro-inflammatory and pro-atherosclerotic properties, which may partly relate to the oxidized phospholipids carried by Lp(a). This panel recommends testing Lp(a) concentration at least once in adults; cascade testing has potential value in familial hypercholesterolaemia, or with family or personal history of (very) high Lp(a) or premature ASCVD. Without specific Lp(a)-lowering therapies, early intensive risk factor management is recommended, targeted according to global cardiovascular risk and Lp(a) level. Lipoprotein apheresis is an option for very high Lp(a) with progressive cardiovascular disease despite optimal management of risk factors. In conclusion, this statement reinforces evidence for Lp(a) as a causal risk factor for cardiovascular outcomes. Trials of specific Lp(a)-lowering treatments are critical to confirm clinical benefit for cardiovascular disease and aortic valve stenosis

    Lipoprotein(a) and Oxidized Phospholipids Promote Valve Calcification in Patients With Aortic Stenosis

    Get PDF
    BACKGROUND: Lipoprotein(a) [Lp(a)], a major carrier of oxidized phospholipids (OxPL), is associated with an increased incidence of aortic stenosis (AS). However, it remains unclear whether elevated Lp(a) and OxPL drive disease progression and are therefore targets for therapeutic intervention. OBJECTIVES: This study investigated whether Lp(a) and OxPL on apolipoprotein B-100 (OxPL-apoB) levels are associated with disease activity, disease progression, and clinical events in AS patients, along with the mechanisms underlying any associations. METHODS: This study combined 2 prospective cohorts and measured Lp(a) and OxPL-apoB levels in patients with AS (Vmax >2.0 m/s), who underwent baseline 18F-sodium fluoride (18F-NaF) positron emission tomography (PET), repeat computed tomography calcium scoring, and repeat echocardiography. In vitro studies investigated the effects of Lp(a) and OxPL on valvular interstitial cells. RESULTS: Overall, 145 patients were studied (68% men; age 70.3 ± 9.9 years). On baseline positron emission tomography, patients in the top Lp(a) tertile had increased valve calcification activity compared with those in lower tertiles (n = 79; 18F-NaF tissue-to-background ratio of the most diseased segment: 2.16 vs. 1.97; p = 0.043). During follow-up, patients in the top Lp(a) tertile had increased progression of valvular computed tomography calcium score (n = 51; 309 AU/year [interquartile range: 142 to 483 AU/year] vs. 93 AU/year [interquartile range: 56 to 296 AU/year; p = 0.015), faster hemodynamic progression on echocardiography (n = 129; 0.23 ± 0.20 m/s/year vs. 0.14 ± 0.20 m/s/year] p = 0.019), and increased risk for aortic valve replacement and death (n = 145; hazard ratio: 1.87; 95% CI: 1.13 to 3.08; p = 0.014), compared with lower tertiles. Similar results were noted with OxPL-apoB. In vitro, Lp(a) induced osteogenic differentiation of valvular interstitial cells, mediated by OxPL and inhibited with the E06 monoclonal antibody against OxPL. CONCLUSIONS: In patients with AS, Lp(a) and OxPL drive valve calcification and disease progression. These findings suggest lowering Lp(a) or inactivating OxPL may slow AS progression and provide a rationale for clinical trials to test this hypothesis

    Apolipoprotein(a) inhibits in vitro tube formation in endothelial cells: identification of roles for Kringle V and the plasminogen activation system.

    Get PDF
    Elevated plasma concentrations of lipoprotein(a) are associated with increased risk for atherothrombotic diseases. Apolipoprotein(a), the unique glycoprotein component of lipoprotein(a), is characterized by the presence of multiple kringle domains, and shares a high degree of sequence homology with the serine protease zymogen plasminogen. It has been shown that angiostatin, a proteolytic fragment of plasminogen containing kringles 1-4, can effectively inhibit angiogenesis. Moreover, proteolytic fragments of plasminogen containing kringle 5 are even more potent inhibitors of angiogenesis than angiostatin. Despite its strong similarity with plasminogen, the role of apolipoprotein(a) in angiogenesis remains controversial, with both pro- and anti-angiogenic effects reported. In the current study, we evaluated the ability of apolipoprotein(a) to inhibit VEGF- and angiopoietin-induced tube formation in human umbilical cord endothelial cells. A 17 kringle-containing form of recombinant apo(a) (17K), corresponding to a well-characterized, physiologically-relevant form of the molecule, effectively inhibited tube formation induced by either VEGF or angiopoietin-1. Using additional recombinant apolipoprotein(a) (r-apo(a)) variants, we demonstrated that this effect was dependent on the presence of an intact lysine-binding site in kringle V domain of apo(a), but not on the presence of the functional lysine-binding site in apo(a) kringle IV type 10; sequences within in the amino-terminal half of the molecule were also not required for the inhibitory effects of apo(a). We also showed that the apo(a)-mediated inhibition tube formation could be reversed, in part by the addition of plasmin or urokinase plasminogen activator, or by removal of plasminogen from the system. Further, we demonstrated that apo(a) treated with glycosidases to remove sialic acid was significantly less effective in inhibiting tube formation. This is the first report of a functional role for the glycosylation of apo(a) although the mechanisms underlying this observation remain to be determined in the context of angiogenesis
    • …
    corecore