154 research outputs found

    Shape measure for identifying perceptually informative parts of 3d objects

    Get PDF
    We propose a mathematical approach for quantifying shape complexity of 3D surfaces based on perceptual principles of visual saliency. Our curvature variation measure (CVM), as a 3D feature, combines surface curvature and information theory by leveraging bandwidth-optimized kernel density estimators. Using a part decomposition algorithm for digitized 3D objects, represented as triangle meshes, we apply our shape measure to transform the low level mesh representation into a perceptually informative form. Further, we analyze the effects of noise, sensitivity to digitization, occlusions, and descriptiveness to demonstrate our shape measure on laser-scanned real world 3D objects. 1

    Integration of Multispectral Face Recognition and Multi-PTZ Camera Automated Surveillance for Security Applications

    Get PDF
    Due to increasing security concerns, a complete security system should consist of two major components, a computer-based face-recognition system and a real-time automated video surveillance system. A computer-based face-recognition system can be used in gate access control for identity authentication. In recent studies, multispectral imaging and fusion of multispectral narrow-band images in the visible spectrum have been employed and proven to enhance the recognition performance over conventional broad-band images, especially when the illumination changes. Thus, we present an automated method that specifies the optimal spectral ranges under the given illumination. Experimental results verify the consistent performance of our algorithm via the observation that an identical set of spectral band images is selected under all tested conditions. Our discovery can be practically used for a new customized sensor design associated with given illuminations for an improved face recognition performance over conventional broad-band images. In addition, once a person is authorized to enter a restricted area, we still need to continuously monitor his/her activities for the sake of security. Because pantilt-zoom (PTZ) cameras are capable of covering a panoramic area and maintaining high resolution imagery for real-time behavior understanding, researches in automated surveillance systems with multiple PTZ cameras have become increasingly important. Most existing algorithms require the prior knowledge of intrinsic parameters of the PTZ camera to infer the relative positioning and orientation among multiple PTZ cameras. To overcome this limitation, we propose a novel mapping algorithm that derives the relative positioning and orientation between two PTZ cameras based on a unified polynomial model. This reduces the dependence on the knowledge of intrinsic parameters of PTZ camera and relative positions. Experimental results demonstrate that our proposed algorithm presents substantially reduced computational complexity and improved flexibility at the cost of slightly decreased pixel accuracy as compared to Chen and Wang\u27s method [18]. © Versita sp. z o.o

    Dense Stereo Correspondence Using Polychromatic Block Matching

    No full text
    Abstract. Only few problems in computer vision have been investigated more vigorously than stereo. Nevertheless, almost all methods use only gray values and most of them are feature-based techniques, i.e., they produce only sparse depth maps. This paper presents an efficient technique for dense stereo correspondence using a new Polychromatic Block Matching. Four different color models (RGB, XYZ, IlI2I 3, HSI) and three different color measures have been investigated with regard to their suitability for stereo matching. As a result the IlI2I 3 color space provides the best information for stereo when using the Euclidean distance for color measurement.
    • …
    corecore