5 research outputs found

    Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector

    Get PDF
    Improvements in temporal resolution of single photon detectors enable increased data rates and transmission distances for both classical and quantum optical communication systems, higher spatial resolution in laser ranging, and observation of shorter-lived fluorophores in biomedical imaging. In recent years, superconducting nanowire single-photon detectors (SNSPDs) have emerged as the most efficient, time-resolving single-photon counting detectors available in the near infrared, but understanding of the fundamental limits of timing resolution in these devices has been limited due to a lack investigations into the time scales involved in the detection process. We introduce an experimental technique to probe the detection latency in SNSPDs and show that the key to achieving low timing jitter is the use of materials with low latency. By using a specialised niobium nitride (NbN) SNSPD we demonstrate that the system temporal resolution can be as good as 2.6±0.2 ps for visible wavelengths and 4.3±0.2 ps at 1550 nm

    Intrinsic Timing Jitter and Latency in Superconducting Nanowire Single-photon Detectors

    Get PDF
    We analyze the origin of the intrinsic timing jitter in superconducting nanowire single photon detectors (SNSPDs) in terms of fluctuations in the latency of the detector response, which is determined by the microscopic physics of the photon detection process. We demonstrate that fluctuations in the physical parameters which determine the latency give rise to the intrinsic timing jitter. We develop a general description of latency by introducing the explicit time dependence of the internal detection efficiency. By considering the dynamic Fano fluctuations together with static spatial inhomogeneities, we study the details of the connection between latency and timing jitter. We develop both a simple phenomenological model and a more general microscopic model of detector latency and timing jitter based on the solution of the generalized time-dependent Ginzburg-Landau equations for the 1D hotbelt geometry. While the analytical model is sufficient for qualitative interpretation of recent data, the general approach establishes the framework for a quantitative analysis of detector latency and the fundamental limits of intrinsic timing jitter. These theoretical advances can be used to interpret the results of recent experiments measuring the dependence of detection latency and timing jitter on photon energy to the few-picosecond level

    Effect of temperature oscillations on kinetic inductance and depairing in thin and narrow superconducting nanowire resonators

    No full text
    Recent experiments have demonstrated a method for extracting the depairing current of nanowires fabricated from thin-film dirty superconductors using the AC response of DC-current biased resonators. While the existing theoretical model for understanding this response, developed by Clem and Kogan, provides agreement with Eilenberger-Usadel theory at low temperatures, there is a systematic and substantial deviation from theory at elevated temperatures. We propose that the DC bias in the presence of electromagnetic oscillations leads to Joule heating in the superconductor. This heating, combined with the strong electron-electron scattering in these heavily disordered materials, leads to oscillations in the effective temperature of the superconductor which alter the kinetic inductance. In this work, we derive the expression for the shift in kinetic inductance in the presence of a bias current and demonstrate that this model provides a significantly improved agreement between experiment and theory. © 2023 American Physical Society
    corecore