6 research outputs found

    Важливе історико-географічне дослідження

    Get PDF
    Рец. на кн. Темушева В.Н. "Гомельская земля в конце XV первой половине XVI в. Территориальные трансформации в пограничном регионе". — М.: "Квадрига", 2009. — 190 с.Review of the book: Temushev V.N. "Gomel Land in the Late 15th — the 1st half of the 16th Centuries. Territorial Transformations in the Frontier Area". — Moscow: "Kvadriga", 2009. — 190 p

    PLGA nanoparticle formulation of RK-33 an RNA helicase inhibitor against DDX3

    No full text
    BACKGROUND: The DDX3 helicase inhibitor RK-33 is a newly developed anticancer agent that showed promising results in preclinical research (Bol et al. EMBO Mol Med, 7(5):648-649, 2015). However, due to the physicochemical and pharmacological characteristics of RK-33, we initiated development of alternative formulations of RK-33 by preparing sustained release nanoparticles that can be administered intravenously. METHODS: In this study, RK-33 was encapsulated in poly(lactic-co-glycolic acid) (PLGA), one of the most well-developed biodegradable polymers, using the emulsion solvent evaporation method. RESULTS: Hydrodynamic diameter of RK-33-PLGA nanoparticles was about 245 nm with a negative charge, and RK-33-PLGA nanoparticles had a payload of 1.4 % RK-33. RK-33 was released from the PLGA nanoparticles over 7 days (90 ± 5.7 % released by day 7) and exhibited cytotoxicity to human breast carcinoma MCF-7 cells in a time-dependent manner. Moreover, RK-33-PLGA nanoparticles were well tolerated, and systemic retention of RK-33 was markedly improved in normal mice. CONCLUSIONS: PLGA nanoparticles have a potential as a parenteral formulation of RK-33

    PLGA nanoparticle formulation of RK-33 an RNA helicase inhibitor against DDX3

    No full text
    BACKGROUND: The DDX3 helicase inhibitor RK-33 is a newly developed anticancer agent that showed promising results in preclinical research (Bol et al. EMBO Mol Med, 7(5):648-649, 2015). However, due to the physicochemical and pharmacological characteristics of RK-33, we initiated development of alternative formulations of RK-33 by preparing sustained release nanoparticles that can be administered intravenously. METHODS: In this study, RK-33 was encapsulated in poly(lactic-co-glycolic acid) (PLGA), one of the most well-developed biodegradable polymers, using the emulsion solvent evaporation method. RESULTS: Hydrodynamic diameter of RK-33-PLGA nanoparticles was about 245 nm with a negative charge, and RK-33-PLGA nanoparticles had a payload of 1.4 % RK-33. RK-33 was released from the PLGA nanoparticles over 7 days (90 ± 5.7 % released by day 7) and exhibited cytotoxicity to human breast carcinoma MCF-7 cells in a time-dependent manner. Moreover, RK-33-PLGA nanoparticles were well tolerated, and systemic retention of RK-33 was markedly improved in normal mice. CONCLUSIONS: PLGA nanoparticles have a potential as a parenteral formulation of RK-33
    corecore