411 research outputs found

    Near-wall velocity of suspended particles in microchannel flow

    Get PDF
    This contribution investigates the characteristic reduction of the particle velocity with respect to the velocity profile of a pure liquid (water) in a pressure driven flow (PDF). It is shown by simulations and experiments that particles are slowed down once their local perturbation "cloud" of the velocity field hits the wall. We show that this effect scales with the ratio of the distance of sphere's surface from the wall, a, and the radius, a, of the sphere, i.e. delta/a

    Adsorption studies of DNA origami on silicon dioxide

    Get PDF
    Self-assembled DNA nanostructures promise low-cost ways to create nanoscale shapes. DNA nanostructures can also be used to position particles with nanometer precision. Yet, reliable and low-cost ways of integrating the structures with MEMS technology still have to be developed and innovations are of great interest to the field. We have examined in detail the adherence of DNA origami tiles on silicon oxide surfaces of wafers in dependence on pH-value and magnesium ion concentration. The results of this work will help to pursue new strategies of positioning DNA nanostruc-tures on SiO2. Precise control over the strength of structure-surface adhesion is a prerequisite of relia-ble processes

    Wireless Double Micro-Resonator for Orientation Free Tracking of MR-Catheter During Interventional MRI

    Get PDF

    Direct Chiral Discrimination with NMR

    Get PDF

    Sample-centred shimming enables independent parallel NMR detection

    Get PDF
    Two major technical challenges facing parallel nuclear magnetic resonance (NMR) spectroscopy, at the onset, include the need to achieve exceptional [Formula: see text] homogeneity, and good inter-detector radiofrequency signal decoupling, and have remained as technical obstacles that limit high throughput compound screening via NMR. In this contribution, we consider a compact detector system, consisting of two NMR ‘unit cell’ resonators that implement parallel [Formula: see text] shimming with parallel radiofrequency detection, as a prototype NMR environment, pointing the way towards achieving accelerated NMR analysis. The utility of our approach is established by achieving local field correction within the bore of a 1.05T permanent magnet MRI. Our forerunner platform suppresses signal cross-coupling in the range of [Formula: see text] dB to [Formula: see text] dB, under a geometrically decoupled scheme, leading to a halving of the necessary inter-coil separation. In this permanent magnet environment, two decoupled parallel NMR detector sites simultaneously achieve narrow spectral linewidth, overcoming the spatial inhomogeneity of the magnet from 400 to 28 Hz
    corecore