12 research outputs found

    Maps showing the Physical Hydrogeology and Changes in Saturated Thickness (Predevelopment to Spring 2016 and Spring 2011 to Spring 2016) in the Middle Republican Natural Resources District, Southwestern Nebraska.

    Get PDF
    This report accompanies fourteen new maps summarizing the hydrogeology and changes in saturated thickness in the Middle Republican Natural Resources District (MRNRD). The purpose of these maps is to assist the MRNRD in their groundwater management programs and in planning and installing an observation well network. Maps include: • base of the principal aquifer; • water table surfaces for predevelopment, Spring 2011, and Spring 2016; • saturated thicknesses for predevelopment, Spring 2011, and Spring 2016; • changes in saturated thickness (both in absolute magnitude and in percent) from predevelopment to Spring 2016 and from Spring 2011 to Spring 2016; • transmissivity. A series of comprehensive datasets was assembled from borehole logs and groundwater-level measurements. Borehole logs were assessed for quality using systematic procedures. Maps were generated using ordinary kriging (base of aquifer, transmissivity) and co-kriging (water table surfaces), and raster files were subtracted to derive the saturated thickness and change maps. Saturated thickness decreased as much as 35 ft from predevelopment to 2016, and as much as 10 ft from 2011 to 2016. Percentage decreases were as much as 40% from predevelopment to 2016 and as much as 10% from 2011 to 2016. Increases in saturated thickness occurred near surface water development projects north of the MRNRD, and were as much as 36 ft (15%) from predevelopment to 2016. Increases from 2011 to 2016 occurred in a few small areas, and were as much as 3 ft (5%). The calculated change in saturated thickness was highly variable between the two time periods in areas of sparse data and where the aquifer is thin. Digital GIS files are provided as part of this report for use in models, maps, and related hydrogeologic analyses

    Nebraska Statewide Groundwater-Level Monitoring Report 2009

    Get PDF

    Groundwater In Nebraska

    Get PDF
    What is groundwater? Groundwater is water that fills and moves between spaces in underground rocks, gravel, sand, or other materials

    Nebraska Statewide Groundwater-Level Monitoring Report 2011

    Get PDF

    Nebraska Statewide Groundwater-Level Monitoring Report 2011

    Get PDF

    Multiple‑point statistical modeling of three‑dimensional glacial aquifer heterogeneity for improved groundwater management

    Get PDF
    Quaternary glacial aquifers are important water sources for irrigation in many agricultural regions, including eastern Nebraska, USA. Quaternary glacial aquifers are heterogeneous, with juxtaposed low-permeability and high-permeability hydrofacies. Managing groundwater in such aquifers requires a realistic groundwater-flow model parameterization, and characterization of the aquifer geometry, spatial distribution of aquifer properties, and local aquifer interconnectedness. Despite its importance in considering uncertainty during decision-making, hydrofacies probabilities generated from multiple-point statistics (MPS) are not widely applied for groundwater model parameterization and groundwater management zone delineation. This study used a combination of soft data, a cognitive training image, and hard data to generate 100 three-dimensional (3D) conditional aquifer heterogeneity realizations. The most probable model (probability of hydrofacies) was then computed at node spacing of 200 Ă— 200 Ă— 3 m and validated using groundwater-level hydrographs. The resulting hydrofacies probability grids revealed variations in aquifer geometry, locally disconnected aquifer systems, recharge pathways, and hydrologic barriers. The profiles from hydrofacies probability at various locations show spatial variability of the streambed and aquifer connectivity. Groundwater-level hydrographs show evidence of these aquifer characteristics, verifying the general structure of the model. Using the MPS-generated 3D hydrofacies probability and hydrologic data, a novel workflow was developed in order to better define high-resolution groundwater management zones and strategies. In general, the conditional probability of hydrofacies helps improve the understanding of glacial aquifer heterogeneity, the characterization of aquifer-to-aquifer and streambed-aquifer connections, and the delineation of groundwater management zones. This MPS workflow can be adapted to other areas for modeling 3D aquifer heterogeneity using multisource data

    Three-dimensional architecture and hydrostratigraphy of cross-cutting buried valleys using airborne electromagnetics, glaciated Central Lowlands, Nebraska, USA

    Get PDF
    Buried valleys are characteristic features of glaciated landscapes, and their deposits host important aquifers worldwide. Understanding the stratigraphic architecture of these deposits is essential for protecting groundwater and interpreting sedimentary processes in subglacial and ice-marginal environments. The relationships between depositional architecture, topography and hydrostratigraphy in dissected, pre-Illinoian till sheets is poorly understood. Boreholes alone are inadequate to characterize the complex geology of buried valleys, but airborne electromagnetic surveys have proven useful for this purpose. A key question is whether the sedimentary architecture of buried valleys can be interpreted from airborne electromagnetic profiles. This study employs airborne electromagnetic resistivity profiles to interpret the threedimensional sedimentary architecture of cross-cutting buried valleys in a ca 400 km2 area along the western margin of Laurentide glaciation in North America. A progenitor bedrock valley is succeeded by at least five generations of tunnel valleys that become progressively younger northward. Tunnel-valley infills are highly variable, reflecting under-filled and over-filled conditions. Under-filled tunnel valleys are expressed on the modern landscape and contain fine sediments that act as hydraulic barriers. Over-filled tunnel valleys are not recognized in the modern landscape, but where they are present they form hydraulic windows between deep aquifer units and the land surface. The interpretation of tunnel-valley genesis herein provides evidence of the relationships between depositional processes and glacial landforms in a dissected, pre-Illinoian till sheet, and contributes to the understanding of the complex physical hydrology of glacial aquifers in general

    Three-dimensional architecture and hydrostratigraphy of cross-cutting buried valleys using airborne electromagnetics, glaciated Central Lowlands, Nebraska, USA

    Get PDF
    Buried valleys are characteristic features of glaciated landscapes, and their deposits host important aquifers worldwide. Understanding the stratigraphic architecture of these deposits is essential for protecting groundwater and interpreting sedimentary processes in subglacial and ice-marginal environments. The relationships between depositional architecture, topography and hydrostratigraphy in dissected, pre-Illinoian till sheets is poorly understood. Boreholes alone are inadequate to characterize the complex geology of buried valleys, but airborne electromagnetic surveys have proven useful for this purpose. A key question is whether the sedimentary architecture of buried valleys can be interpreted from airborne electromagnetic profiles. This study employs airborne electromagnetic resistivity profiles to interpret the threedimensional sedimentary architecture of cross-cutting buried valleys in a ca 400 km2 area along the western margin of Laurentide glaciation in North America. A progenitor bedrock valley is succeeded by at least five generations of tunnel valleys that become progressively younger northward. Tunnel-valley infills are highly variable, reflecting under-filled and over-filled conditions. Under-filled tunnel valleys are expressed on the modern landscape and contain fine sediments that act as hydraulic barriers. Over-filled tunnel valleys are not recognized in the modern landscape, but where they are present they form hydraulic windows between deep aquifer units and the land surface. The interpretation of tunnel-valley genesis herein provides evidence of the relationships between depositional processes and glacial landforms in a dissected, pre-Illinoian till sheet, and contributes to the understanding of the complex physical hydrology of glacial aquifers in general
    corecore