71 research outputs found

    Detecting Neuroendocrine Prostate Cancer Through Tissue-Informed Cell-Free DNA Methylation Analysis

    Get PDF
    Purpose: Neuroendocrine prostate cancer (NEPC) is a resistance phenotype that emerges in men with metastatic castration-resistant prostate adenocarcinoma (CR-PRAD) and has important clinical implications, but is challenging to detect in practice. Herein, we report a novel tissue-informed epigenetic approach to noninvasively detect NEPC. Experimental Design: We first performed methylated immunoprecipitation and high-throughput sequencing (MeDIP-seq) on a training set of tumors, identified differentially methylated regions between NEPC and CR-PRAD, and built a model to predict the presence of NEPC (termed NEPC Risk Score). We then performed MeDIP-seq on cell-free DNA (cfDNA) from two independent cohorts of men with NEPC or CR-PRAD and assessed the accuracy of the model to predict the presence NEPC. Results: The test cohort comprised cfDNA samples from 48 men, 9 with NEPC and 39 with CR-PRAD. NEPC Risk Scores were significantly higher in men with NEPC than CR-PRAD (P = 4.3 × 10-7) and discriminated between NEPC and CR-PRAD with high accuracy (AUROC 0.96). The optimal NEPC Risk Score cutoff demonstrated 100% sensitivity and 90% specificity for detecting NEPC. The independent, multi-institutional validation cohort included cfDNA from 53 men, including 12 with NEPC and 41 with CR-PRAD. NEPC Risk Scores were significantly higher in men with NEPC than CR-PRAD (P = 7.5×10-12) and perfectly discriminated NEPC from CR-PRAD (AUROC 1.0). Applying the predefined NEPC Risk Score cutoff to the validation cohort resulted in 100% sensitivity and 95% specificity for detecting NEPC. Conclusions: Tissue-informed cfDNA methylation analysis is a promising approach for noninvasive detection of NEPC in men with advanced prostate cancer

    CD27− B-Cells Produce Class Switched and Somatically Hyper-Mutated Antibodies during Chronic HIV-1 Infection

    Get PDF
    Class switch recombination and somatic hypermutation occur in mature B-cells in response to antigen stimulation. These processes are crucial for the generation of functional antibodies. During HIV-1 infection, loss of memory B-cells, together with an altered differentiation of naïve B-cells result in production of low quality antibodies, which may be due to impaired immunoglobulin affinity maturation. In the current study, we evaluated the effect of HIV-1 infection on class switch recombination and somatic hypermutation by studying the expression of activation-induced cytidine deaminase (AID) in peripheral B-cells from a cohort of chronically HIV-1 infected patients as compared to a group of healthy controls. In parallel, we also characterized the phenotype of B-cells and their ability to produce immunoglobulins in vitro. Cells from HIV-1 infected patients showed higher baseline levels of AID expression and increased IgA production measured ex-vivo and upon CD40 and TLR9 stimulation in vitro. Moreover, the percentage of CD27−IgA+ and CD27−IgG+ B-cells in blood was significantly increased in HIV-1 infected patients as compared to controls. Interestingly, our results showed a significantly increased number of somatic hypermutations in the VH genes in CD27− cells from patients. Taken together, these results show that during HIV-1 infection, CD27− B-cells can also produce class switched and somatically hypermutated antibodies. Our data add important information for the understanding of the mechanisms underlying the loss of specific antibody production observed during HIV-1 infection

    High‐throughput identification of RNA nuclear enrichment sequences

    Get PDF
    Abstract In the post‐genomic era, thousands of putative noncoding regulatory regions have been identified, such as enhancers, promoters, long noncoding RNAs (lncRNAs), and a cadre of small peptides. These ever‐growing catalogs require high‐throughput assays to test their functionality at scale. Massively parallel reporter assays have greatly enhanced the understanding of noncoding DNA elements en masse. Here, we present a massively parallel RNA assay (MPRNA) that can assay 10,000 or more RNA segments for RNA‐based functionality. We applied MPRNA to identify RNA‐based nuclear localization domains harbored in lncRNAs. We examined a pool of 11,969 oligos densely tiling 38 human lncRNAs that were fused to a cytosolic transcript. After cell fractionation and barcode sequencing, we identified 109 unique RNA regions that significantly enriched this cytosolic transcript in the nucleus including a cytosine‐rich motif. These nuclear enrichment sequences are highly conserved and over‐represented in global nuclear fractionation sequencing. Importantly, many of these regions were independently validated by single‐molecule RNA fluorescence in situ hybridization. Overall, we demonstrate the utility of MPRNA for future investigation of RNA‐based functionalities

    Asymmetry of Discharge/Charge Curves of Lithium-Ion Battery Intercalation Electrodes

    No full text
    Nickel cobalt aluminum oxide (NCA) based lithium-ion battery electrodes exhibit a distinct asymmetry in discharge/charge behavior towards high bulk stoichiometry (low state of charge). We show that basic electrochemical relationships, that is, the Nernst equation and the Butler-Volmer equation, are able to reproduce this behavior when a two-step reaction mechanism is assumed. The two-step mechanism consists of (1) lithium-ion adsorption from the electrolyte onto the active material particle surface under electron transfer, and (2) intercalation of surface-adsorbed lithium atoms into the bulk material. The asymmetry of experimental half-cell data of an NCA electrode cycled at 0.1 C-rate can be quantitatively reproduced with this simple model. The model parameters show two alternative solutions, predicting either a saturated (highly-covered) or a depleted surface for high bulk lithiation
    corecore