160 research outputs found

    Competitive androgen receptor antagonism as a factor determining the predictability of cumulative antiandrogenic effects of widely used pesticides

    Get PDF
    Copyright @ 2012 National Institute of Environmental Health Sciences.This article has been made available through the Brunel Open Access Publishing Fund.Background: Many pesticides in current use have recently been revealed as in vitro androgen receptor (AR) antagonists, but information about their combined effects is lacking.
Objective: We investigated the combined effects and the competitive AR antagonism of pesticide mixtures.
Methods: We used the MDA-kb2 assay to test a combination of eight AR antagonists that did not also possess AR agonist properties (“pure” antagonists; 8 mix: fludioxonil, fenhexamid, ortho-­phenylphenol, imazalil, tebuconazole, dimetho­morph, methiocarb, pirimiphos-methyl), a combina­tion of five AR antagonists that also showed agonist activity (5 mix: cyprodinil, pyrimethanil, vinclozolin, chlor­propham, linuron), and all pesticides combined (13 mix). We used concentration addition (CA) and independent action (IA) to formu­late additivity expectations, and Schild plot analyses to investigate competitive AR antagonism.
Results: A good agreement between the effects of the mixture of eight “pure” AR antagonists and the responses predicted by CA was observed. Schild plot analysis revealed that the 8 mix acted by competi­tive AR antagonism. However, the observed responses of the 5 mix and the 13 mix fell within the “prediction window” boundaries defined by the predicted regression curves of CA and IA. Schild plot analysis with these mixtures yielded anomalous responses incompatible with competitive receptor antagonism.
Conclusions: A mixture of widely used pesticides can, in a predictable manner, produce combined AR antagonist effects that exceed the responses elicited by the most potent component alone. Inasmuch as large populations are regularly exposed to mixtures of anti­androgenic pesticides, our results underline the need for considering combination effects for these substances in regulatory practice.
This article is made available through the Brunel Open Access Publishing Fund. This work was funded by the European Commission, FP7 programme (CONTAMED, grant 212502).

    Introduction: Endocrine Disruptors—Exposure Assessment, Novel End Points, and Low-Dose and Mixture Effects

    Get PDF
    With the aim of discussing new research findings about chemicals able to interfere with the endocrine system, so-called endocrine disruptors, an international workshop was held in Prague, Czech Republic, 10–12 May 2005. The workshop was organized jointly by the EDEN project (Endocrine Disrupters: Exploring Novel Endpoints, Exposure, Low-Dose and Mixture-Effects in Humans, Aquatic Wildlife and Laboratory Animals; http://www.edenresearch.info) and the FIRE project (Risk Assessment of Brominated Flame Retardants as Suspected Endocrine Disrupters for Human and Wildlife Health; http://www.rivm.nl/fire), both large-scale consortia funded by the European Union (EU). The meeting was attended by more than 170 scientists from academia, industry, government agencies, and other organizations

    Additive mixture effects of estrogenic chemicals in human cell-based assays can be influenced by inclusion of chemicals with differing effect profiles

    Get PDF
    Copyright @ 2012 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and 85 reproduction in any medium, provided the original author and source are credited. The article was made available through the Brunel University Open Access Publishing Fund.A growing body of experimental evidence indicates that the in vitro effects of mixtures of estrogenic chemicals can be well predicted from the estrogenicity of their components by the concentration addition (CA) concept. However, some studies have observed small deviations from CA. Factors affecting the presence or observation of deviations could include: the type of chemical tested; number of mixture components; mixture design; and assay choice. We designed mixture experiments that address these factors, using mixtures with high numbers of components, chemicals from diverse chemical groups, assays with different in vitro endpoints and different mixture designs and ratios. Firstly, the effects of mixtures composed of up to 17 estrogenic chemicals were examined using estrogenicity assays with reporter-gene (ERLUX) and cell proliferation (ESCREEN) endpoints. Two mixture designs were used: 1) a 'balanced' design with components present in proportion to a common effect concentration (e.g. an EC(10)) and 2) a 'non-balanced' design with components in proportion to potential human tissue concentrations. Secondly, the individual and simultaneous ability of 16 potential modulator chemicals (each with minimal estrogenicity) to influence the assay outcome produced by a reference mixture of estrogenic chemicals was examined. Test chemicals included plasticizers, phthalates, metals, PCBs, phytoestrogens, PAHs, heterocyclic amines, antioxidants, UV filters, musks, PBDEs and parabens. In all the scenarios tested, the CA concept provided a good prediction of mixture effects. Modulation studies revealed that chemicals possessing minimal estrogenicity themselves could reduce (negatively modulate) the effect of a mixture of estrogenic chemicals. Whether the type of modulation we observed occurs in practice most likely depends on the chemical concentrations involved, and better information is required on likely human tissue concentrations of estrogens and of potential modulators. Successful prediction of the effects of diverse chemical combinations might be more likely if chemical profiling included consideration of effect modulation.This study is funded by the United Kingdom Food Standards Agency (Contract Number T01045)

    Combining xenoestrogens at levels below individual no-observed-effect concentrations dramatically enhances steroid hormone action.

    Get PDF
    The low potency of many man-made estrogenic chemicals, so-called xenoestrogens, has been used to suggest that risks arising from exposure to individual chemicals are negligible. Another argument used to dismiss concerns of health effects is that endogenous steroidal estrogens are too potent for xenoestrogens to contribute significantly to estrogenic effects. Using a yeast reporter gene assay with the human estrogen receptoralpha, we tested these ideas experimentally by assessing the ability of a combination of 11 xenoestrogens to affect the actions of 17ss-estradiol. Significantly, each xenoestrogen was present at a level well below its no-observed-effect concentration (NOEC). To derive accurate descriptions of low effects, we recorded concentration-response relationships for each xenoestrogen and for 17ss-estradiol. We used these data to predict entire concentration-response curves of mixtures of xenoestrogens with 17ss-estradiol, assuming additive combination effects. Over a large range of concentrations, the experimentally observed responses decisively confirmed the model predictions. The combined additive effect of the 11 xenoestrogens led to a dramatic enhancement of the hormone's action, even when each single agent was present below its NOEC. Our results show that not even sub-NOEC levels of xenoestrogens can be considered to be without effect on potent steroidal estrogens when they act in concert with a large number of similarly acting chemicals. It remains to be seen to what degree these effects can be neutralized by environmental chemicals with antiestrogenic activity. Nevertheless, potential human and wildlife responses induced by additive combination effects of xenoestrogens deserve serious consideration

    Drivers of divergent assessments of bisphenol-A hazards to semen quality by various European agencies, regulators and scientists

    Get PDF
    The downward revision of the bisphenol A (BPA) Health-based Guidance Value (HBGV) by the European Food Safety Authority (EFSA) has led to disagreements with other regulatory agencies, among them the German Federal Institute for Risk Assessment (BfR). The BfR has recently published an alternative Tolerable Daily Intake (TDI), 1000-times higher than the EFSA HBGV of 0.2 ng/kg/d. While the EFSA value is defined in relation to immunotoxicity, the BfR alternative TDI is based on declines in sperm counts resulting from exposures in adulthood. Earlier, we had used semen quality deteriorations to estimate a BPA Reference Dose (RfD) of 3 ng/kg/d for use in mixture risk assessments of male reproductive health. We derived this estimate from animal studies of gestational BPA exposures which both EFSA and BfR viewed as irrelevant for human hazard characterisations. Here, we identify factors that drive these diverging views. We find that the fragmented, endpoint-oriented study evaluation system used by EFSA and BfR, with its emphasis on data that can support dose-response analyses, has obscured the overall BPA effect pattern relevant to male reproductive effects. This has led to a disregard for the effects of gestational BPA exposures. We also identify problems with the study evaluation schemes used by EFSA and BfR which leads to the omission of entire streams of evidence from consideration. The main driver of the diverging views of EFSA and BfR is the refusal by BfR to accept immunotoxic effects as the basis for establishing an HBGV. We find that switching from immunotoxicity to declines in semen quality as the basis for deriving a BPA TDI by deterministic or probabilistic approaches produces values in the range of 2.4-6.6 ng/kg/d, closer to the present EFSA HBGV of 0.2 ng/kg/d than the BfR TDI of 200 ng/kg/d. The proposed alternative BfR value is the result of value judgements which erred on the side of disregarding evidence that could have supported a lower TDI. The choices made in terms of selecting key studies and methods for dose-response analyses produced a TDI that comes close to doses shown to produce effects on semen quality in animal studies and in human studies of adult BPA exposures

    Widely Used Pesticides with Previously Unknown Endocrine Activity Revealed as in Vitro Antiandrogens

    Get PDF
    Background: Evidence suggests that there is widespread decline in male reproductive health and that antiandrogenic pollutants may play a significant role. There is also a clear disparity between pes¬ticide exposure and data on endocrine disruption, with most of the published literature focused on pesticides that are no longer registered for use in developed countries. Objective: We used estimated human exposure data to select pesticides to test for antiandrogenic activity, focusing on highest use pesticides. Methods: We used European databases to select 134 candidate pesticides based on highest expo-sure, followed by a filtering step according to known or predicted receptor-mediated antiandrogenic potency, based on a previously published quantitative structure–activity relationship (QSAR) model. In total, 37 pesticides were tested for in vitro androgen receptor (AR) antagonism. Of these, 14 were previously reported to be AR antagonists (“active”), 4 were predicted AR antagonists using the QSAR, 6 were predicted to not be AR antagonists (“inactive”), and 13 had unknown activity, which were “out of domain” and therefore could not be classified with the QSAR (“unknown”). Results: All 14 pesticides with previous evidence of AR antagonism were confirmed as antiandrogenic in our assay, and 9 previously untested pesticides were identified as antiandrogenic (dimethomorph, fenhexamid, quinoxyfen, cyprodinil, λ-cyhalothrin, pyrimethanil, fludioxonil, azinphos-methyl, pirimiphos-methyl). In addition, we classified 7 compounds as androgenic. Conclusions: Due to estimated antiandrogenic potency, current use, estimated exposure, and lack of previous data, we strongly recommend that dimethomorph, fludioxonil, fenhexamid, imazalil, ortho-phenylphenol, and pirimiphos-methyl be tested for antiandrogenic effects in vivo. The lack of human biomonitoring data for environmentally relevant pesticides presents a barrier to current risk assessment of pesticides on humans.European Commission (grant 21250

    Extending the applicability of the dose addition model to the assessment of chemical mixtures of partial agonists by using a novel toxic unit extrapolation method

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Dose addition, a commonly used concept in toxicology for the prediction of chemical mixture effects, cannot readily be applied to mixtures of partial agonists with differing maximal effects. Due to its mathematical features, effect levels that exceed the maximal effect of the least efficacious compound present in the mixture, cannot be calculated. This poses problems when dealing with mixtures likely to be encountered in realistic assessment situations where chemicals often show differing maximal effects. To overcome this limitation, we developed a pragmatic solution that extrapolates the toxic units of partial agonists to effect levels beyond their maximal efficacy. We extrapolated different additivity expectations that reflect theoretically possible extremes and validated this approach with a mixture of 21 estrogenic chemicals in the E-Screen. This assay measures the proliferation of human epithelial breast cancers. We found that the dose-response curves of the estrogenic agents exhibited widely varying shapes, slopes and maximal effects, which made it necessary to extrapolate mixture responses above 14% proliferation. Our toxic unit extrapolation approach predicted all mixture responses accurately. It extends the applicability of dose addition to combinations of agents with differing saturating effects and removes an important bottleneck that has severely hampered the use of dose addition in the past. © 2014 Scholze et al

    Examining the feasibility of mixture risk assessment: A case study using a tiered approach with data of 67 pesticides from the Joint FAO/WHO Meeting on Pesticide Residues (JMPR)

    Get PDF
    The way in which mixture risk assessment (MRA) should be included in chemical risk assessment is a current topic of debate. We used data from 67 recent pesticide evaluations to build a case study using Hazard Index calculations to form risk estimates in a tiered MRA approach in line with a Framework proposed by WHO/IPCS. The case study is used to illustrate the approach and to add detail to the existing Framework, and includes many more chemicals than previous case studies.A low-tier MRA identified risk as being greater than acceptable, but refining risk estimates in higher tiers was not possible due to data requirements not being readily met. Our analysis identifies data requirements, which typically expand dramatically in higher tiers, as being the likely cause for an MRA to fail in many realistic cases. This forms a major obstacle to routine implementation of MRA and shows the need for systematic generation and collection of toxicological data. In low tiers, hazard quotient inspection identifies chemicals that contribute most to the HI value and thus require attention if further refinement is needed. Implementing MRA requires consensus on issues such as scope setting, criteria for performing refinement, and decision criteria for actions.Oak Foundation (Grant number OCAY-13-391), which is gratefully acknowledged, and partly in the context of an European Food Safety Authority contract (CFT/EFSA/PPR/2010/04

    Combined Exposure to Anti-Androgens Exacerbates Disruption of Sexual Differentiation in the Rat

    Get PDF
    OBJECTIVE: The aim of this study was to assess whether the joint effects of three androgen receptor antagonists (vinclozolin, flutamide, procymidone) on male sexual differentiation after in utero and postnatal exposures can be predicted based on dose-response data of the individual chemicals. METHODS: Test chemicals and mixtures were administered by gavage to time-mated nulliparous, young adult Wistar rats from gestational day 7 to the day before expected birth, and from postnatal days 1-16. Changes in anogenital distance (AGD) and nipple retention (NR) in male offspring rats were chosen as end points for extensive dose-response studies. Vinclozolin, flutamide, and procymidone were combined at a mixture ratio proportional to their individual potencies for causing retention of six nipples in male offspring. RESULTS: With AGD as the end point, the joint effects of the three anti-androgens were essentially dose additive. The observed responses for NR were slightly higher than those expected on the basis of dose addition. A combination of doses of each chemical, which on its own did not produce statistically significant AGD alterations, induced half-maximal mixture effects. At individual doses associated with only modest effects on NR, the mixture induced NR approaching female values in the males. CONCLUSIONS: Effects of a mixture of similarly acting anti-androgens can be predicted fairly accurately on the basis of the potency of the individual mixture components by using the dose addition concept. Exposure to anti-androgens, which individually appears to exert only small effects, may induce marked responses in concert with, possibly unrecognized, similarly acting chemicals
    corecore