32 research outputs found
Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP
Raf-1 phosphorylates and activates MEK-1, a kinase that activates the extracellular signal regulated kinases (ERK). This kinase cascade controls the proliferation and differentiation of different cell types. Here we describe a Raf-1-interacting protein, isolated using a yeast two-hybrid screen. This protein inhibits the phosphorylation and activation of MEK by Raf-1 and is designated RKIP (Raf kinase inhibitor protein). In vitro, RKIP binds to Raf-1, MEK and ERK, but not to Ras. RKIP co-immunoprecipitates with Raf-1 and MEK from cell lysates and colocalizes with Raf-1 when examined by confocal microscopy. RKIP is not a substrate for Raf-1 or MEK, but competitively disrupts the interaction between these kinases. RKIP overexpression interferes with the activation of MEK and ERK, induction of AP-1-dependent reporter genes and transformation elicited by an oncogenically activated Raf-1 kinase. Downregulation of endogenous RKIP by expression of antisense RNA or antibody microinjection induces the activation of MEK-, ERK- and AP-1-dependent transcription. RKIP represents a new class of protein-kinase-inhibitor protein that regulates the activity of the Raf/MEK/ERK modul
Abnormal bone marrow stroma in mice deficient for nemo-like kinase, Nlk
The stromal compartment of the bone marrow is composed of various cell types that provide trophic and instructive signals for hematopoiesis. The mesenchymal stem cell is believed to give rise to all major cellular components of the bone marrow microenvironment. Nemo-like kinase, Nlk, is a serine-threonine kinase that connects MAP kinase and Wnt signaling pathways; its in vivo function in mouse is unknown. We have generated mice with a targeted disruption of Nlk and find that the complex phenotype significantly varies with the genetic background. Whereas C57BL/6 mice lacking Nlk die during the third trimester of pregnancy, the 129/Sv background supports survival into adolescence; such mice are growth retarded and suffer from various neurological abnormalities. We show here that the Nlk deficiency syndrome includes aberrant differentiation of bone marrow stromal cells. Varying degrees of morphological abnormality, such as increased numbers of adipocytes, large blood sinuses and absence of bone-lining cells are observed in the bone marrow of mutant mice. Nlk deficient mice thus provide a novel model to study the genetic requirements for bone marrow stromal differentiation