1,317 research outputs found

    The phase diagram of 2D polar condensates in a magnetic field

    Get PDF
    Spin one condensates in the polar (antiferromagnetic) phase in two dimensions are shown to undergo a transition of the Ising type, in addition to the expected Kosterlitz--Thouless (KT) transition of half vortices, due to the quadratic Zeeman effect. We establish the phase diagram in terms of temperature and the strength of the Zeeman effect using Monte Carlo simulations. When the Zeeman effect is sufficiently strong the Ising and KT transitions merge. For very strong Zeeman field the remaining transition is of the familiar integer KT type.Comment: 4 pages, 7 figure

    A cluster algorithm for resistively shunted Josephson junctions

    Full text link
    We present a cluster algorithm for resistively shunted Josephson junctions and similar physical systems, which dramatically improves sampling efficiency. The algorithm combines local updates in Fourier space with rejection-free cluster updates which exploit the symmetries of the Josephson coupling energy. As an application, we consider the localization transition of a single junction at intermediate Josephson coupling and determine the temperature dependence of the zero bias resistance as a function of dissipation strength.Comment: 4 page

    Sequence of phase transitions induced in an array of Josephson junctions by their crossover to pi-state

    Full text link
    We show that the transition of Josephson junctions between the conventional and pi states caused by the decrease in temperature induces in a regular two-dimensional array of such junctions not just a single phase transition between two phases with different ordering but a sequence of two, three or four phase transitions. The corresponding phase diagrams are constructed for the cases of bipartite (square or honeycomb) and triangular lattices.Comment: 5 pages, v2: as published in EP

    Disproportionation and electronic phase separation in parent manganite LaMnO_3

    Full text link
    Nominally pure undoped parent manganite LaMnO_3 exhibits a puzzling behavior inconsistent with a simple picture of an A-type antiferromagnetic insulator (A-AFI) with a cooperative Jahn-Teller ordering. We do assign its anomalous properties to charge transfer instabilities and competition between insulating A-AFI phase and metallic-like dynamically disproportionated phase formally separated by a first-order phase transition at T_{disp}=T_{JT}\approx 750 K. The unconventional high-temperature phase is addressed to be a specific electron-hole Bose liquid (EHBL) rather than a simple "chemically" disproportionated R(Mn^{2+}Mn^{4+})O_3 phase. New phase does nucleate as a result of the charge transfer (CT) instability and evolves from the self-trapped CT excitons, or specific EH-dimers, which seem to be a precursor of both insulating and metallic-like ferromagnetic phases observed in manganites. We arrive at highly frustrated system of triplet (e_g^2)^3A_{2g} bosons moving in a lattice formed by hole Mn^{4+} centers. Starting with different experimental data we have reproduced a typical temperature dependence of the volume fraction of high-temperature mixed-valent EHBL phase. We argue that a slight nonisovalent substitution, photo-irradiation, external pressure or magnetic field gives rise to an electronic phase separation with a nucleation or an overgrowth of EH-droplets. Such a scenario provides a comprehensive explanation of numerous puzzling properties observed in parent and nonisovalently doped manganite LaMnO_3 including an intriguing manifestation of superconducting fluctuations.Comment: 20 pages, 8 figure

    Simulation results for an interacting pair of resistively shunted Josephson junctions

    Full text link
    Using a new cluster Monte Carlo algorithm, we study the phase diagram and critical properties of an interacting pair of resistively shunted Josephson junctions. This system models tunneling between two electrodes through a small superconducting grain, and is described by a double sine-Gordon model. In accordance with theoretical predictions, we observe three different phases and crossover effects arising from an intermediate coupling fixed point. On the superconductor-to-metal phase boundary, the observed critical behavior is within error-bars the same as in a single junction, with identical values of the critical resistance and a correlation function exponent which depends only on the strength of the Josephson coupling. We explain these critical properties on the basis of a renormalization group (RG) calculation. In addition, we propose an alternative new mean-field theory for this transition, which correctly predicts the location of the phase boundary at intermediate Josephson coupling strength.Comment: 21 pages, some figures best viewed in colo

    Electron Transport in Granular Metals

    Full text link
    We consider thermodynamic and transport properties of a long granular array with strongly connected grains (inter-grain conductance g>>1.) We find that the system exhibits activated behavior of conductance and thermodynamic density of states ~exp(-T*/T) where the gap, T*, is parametrically larger than the energy at which conventional perturbation theory breaks down. The scale T* represents energy needed to create a long single-electron charge soliton propagating through the array.Comment: 4 pages, 1 figur

    Evolution of superconductivity in Fe-based systems with doping

    Full text link
    We study the symmetry and the structure of the gap in Fe-based superconductors by decomposing the pairing interaction obtained in the RPA into s- and d-wave components and into contributions from scattering between different Fermi surfaces. We show that each interaction is well approximated by the lowest angular harmonics and use this simplification to analyze the origin of the attraction in the two channels, the competition between s- and d-wave solutions, and the origin of superconductivity in heavily doped systems, when only electron or only hole pockets are present.Comment: 4pp, 2 figures, 2 table

    Coulomb Blockade with Dispersive Interfaces

    Full text link
    What quantity controls the Coulomb blockade oscillations if the dot--lead conductance is essentially frequency--dependent ? We argue that it is the ac dissipative conductance at the frequency given by the effective charging energy. The latter may be very different from the bare charging energy due to the interface--induced capacitance (or inductance). These observations are supported by a number of examples, considered from the weak and strong coupling (perturbation theory vs. instanton calculus) perspectives.Comment: 4 page
    corecore