32 research outputs found
Additive effect of LRP8/APOER2 R952Q variant to APOE ε2/ε3/ε4 genotype in modulating apolipoprotein E concentration and the risk of myocardial infarction: a case-control study
BACKGROUND: The R952Q variant in the low density lipoprotein receptor-related protein 8 (LRP8)/apolipoprotein E receptor 2 (ApoER2) gene has been recently associated with familial and premature myocardial infarction (MI) by means of genome-wide linkage scan/association studies. We were interested in the possible interaction of the R952Q variant with another established cardiovascular genetic risk factor belonging to the same pathway, namely apolipoprotein E (APOE) epsilon2/epsilon3/epsilon4 genotype, in modulating apolipoprotein E (ApoE) plasma levels and risk of MI. METHODS: In the Italian cohort used to confirm the association of the R952Q variant with MI, we assessed lipid profile, apolipoprotein concentrations, and APOE epsilon2/epsilon3/epsilon4 genotype. Complete data were available for a total of 681 subjects in a case-control setting (287 controls and 394 patients with MI). RESULTS: Plasma ApoE levels decreased progressively across R952Q genotypes (mean levels +/- SD = RR: 0.045 +/- 0.020, RQ: 0.044 +/- 0.014, QQ: 0.040 +/- 0.008 g/l; P for trend = 0.047). Combination with APOE genotypes revealed an additive effect on ApoE levels, with the highest level observed in RR/non-carriers of the E4 allele (0.046 +/- 0.021 g/l), and the lowest level in QQ/E4 carriers (0.035 +/- 0.009 g/l; P for trend = 0.010). QQ/E4 was also the combined genotype with the most significant association with MI (OR 3.88 with 95\%CI 1.08-13.9 as compared with RR/non-carriers E4). CONCLUSION: Our data suggest that LRP8 R952Q variant may have an additive effect to APOE epsilon2/epsilon3/epsilon4 genotype in determining ApoE concentrations and risk of MI in an Italian population
Diagnostic performance of the noninvasive prenatal FetoGnost RhD assay for the prediction of the fetal RhD blood group status
Purpose!#!To evaluate the diagnostic accuracy of a commercially available test kit for noninvasive prenatal determination of the fetal RhD status (NIPT-RhD) with a focus on early gestation and multiple pregnancies.!##!Methods!#!The FetoGnost RhD assay (Ingenetix, Vienna, Austria) is routinely applied for clinical decision making either in woman with anti-D alloimmunization or to target the application of routine antenatal anti-D prophylaxis (RAADP) to women with a RhD positive fetus. Based on existing data in the laboratory information system the newborn's serological RhD status was compared with NIPT RhD results.!##!Results!#!Since 2009 NIPT RhD was performed in 2968 pregnant women between weeks 5 + 6 and 40 + 0 of gestation (median 12 + 6) and conclusive results were obtained in 2888 (97.30%) cases. Diagnostic accuracy was calculated from those 2244 (77.70%) cases with the newborn's serological RhD status reported. The sensitivity of the FetoGnost RhD assay was 99.93% (95% CI 99.61-99.99%) and the specificity was 99.61% (95% CI 98.86-99.87%). No false-positive or false-negative NIPT RhD result was observed in 203 multiple pregnancies.!##!Conclusion!#!NIPT RhD results are reliable when obtained with FetoGnost RhD assay. Targeted routine anti-D-prophylaxis can start as early as 11 + 0 weeks of gestation in singleton and multiple pregnancies
Monitoring of Paenibacillus larvae in Lower Austria through DNA-Based Detection without De-Sporulation: 2018 to 2022
American foulbrood is caused by the spore-forming Paenibacillus larvae. Although the disease effects honey bee larvae, it threatens the entire colony. Clinical signs of the disease are seen at a very late stage of the disease and bee colonies are often beyond saving. Therefore, through active monitoring based on screening, an infection can be detected early and bee colonies can be protected with hygiene measures. As a result, the pressure to spread in an area remains low. The cultural and molecular biological detection of P. larvae is usually preceded by spore germination before detection. In this study, we compared the results of two methods, the culture detection and RT-PCR detection of DNA directly isolated from spores. Samples of honey and cells with honey surrounding the brood were used in a five-year voluntary monitoring program in a western part of Lower Austria. DNA-extraction from spores to speed up detection involved one chemical and two enzymatic steps before mechanical bashing-beat separation and additional lysis. The results are comparable to culture-based methods, but with a large time advantage. Within the voluntary monitoring program, the proportion of bee colonies without the detection of P. larvae was high (2018: 91.9%, 2019: 72.09%, 2020: 74.6%, 2021: 81.35%, 2022: 84.5%), and in most P. larvae-positive bee colonies, only a very low spore content was detected. Nevertheless, two bee colonies in one apiary with clinical signs of disease had to be eradicated