3 research outputs found

    Earliest Olduvai hominins exploited unstable environments ~ 2 million years ago

    Get PDF
    Rapid environmental change is a catalyst for human evolution, driving dietary innovations, habitat diversification, and dispersal. However, there is a dearth of information to assess hominin adaptions to changing physiography during key evolutionary stages such as the early Pleistocene. Here we report a multiproxy dataset from Ewass Oldupa, in the Western Plio-Pleistocene rift basin of Olduvai Gorge (now Oldupai), Tanzania, to address this lacuna and offer an ecological perspective on human adaptability two million years ago. Oldupai’s earliest hominins sequentially inhabited the floodplains of sinuous channels, then river-influenced contexts, which now comprises the oldest palaeolake setting documented regionally. Early Oldowan tools reveal a homogenous technology to utilise diverse, rapidly changing environments that ranged from fern meadows to woodland mosaics, naturally burned landscapes, to lakeside woodland/palm groves as well as hyper-xeric steppes. Hominins periodically used emerging landscapes and disturbance biomes multiple times over 235,000 years, thus predating by more than 180,000 years the earliest known hominins and Oldowan industries from the Eastern side of the basin.Introduction Results - Stratigraphy and archaeology - Early Oldowan ecology at ~ 2 Ma Discussion Methods - Biomarkers - Energy dispersive X-ray fluorescence - Excavation - Fauna - Mineral geochemistry - Phytolith analysis - Pollen and microcharcoal - Stable carbon and oxygen isotope analysis of faunal dental enamel - Stone tool

    Microbotanical residues for the study of early hominin tools

    Get PDF
    More than 2 million years ago in East Africa, the earliest hominin stone tools evolved amidst changes in resource base, with pounding technology playing a key role in this adaptive process. Olduvai Gorge (now Oldupai) is a famed locality that remains paramount for the study of human evolution, also yielding some of the oldest battering tools in the world. However, direct evidence of the resources processed with these technologies is lacking entirely. One way to obtain this evidence is through the analysis of surviving residues. Yet, linking residues with past processing activities is not simple. In the case of plant exploitation, this link can only be established by assessing site-based reference collections inclusive of both anthropogenic and natural residues as a necessary first step and comparative starting point. In this paper, we assess microbotanical remains from rock clasts sourced at the same quarry utilized by Oldowan hominins at Oldupai Gorge. We mapped this signal and analysed it quantitatively to classify its spatial distribution objectively, extracting proxies for taxonomic identification and further comparison with freestanding soils. In addition, we used blanks to manufacture pounding tools for blind, controlled replication of plant processing. We discovered that stone blanks are in fact environmental reservoirs in which plant remains are trapped by lithobionts, preserved as hardened accretions. Tool use, on the other hand, creates residue clusters; however, their spatial distribution can be discriminated from purely natural assemblages by the georeferencing of residues and statistical analysis of resulting patterns. To conclude, we provide a protocol for best practice and a workflow that has the advantage of overcoming environmental noise, reducing the risk of false positive, delivering a firm understanding of residues as polygenic mixtures, a reliable use of controls, and most importantly, a stronger link between microbotanical remains and stone tool use. © 2022. The Author(s).Materials and methods Results - Blanks as environmental reservoirs - Utilization creates residue clusters - Anthropogenic residue distribution - Of lichen habitability, proxy palimpsests, and hardened accretions - A protocol to study plant residue from Oldowan pounding tool
    corecore