11 research outputs found

    Is disrupted sleep a risk factor for Alzheimer's disease?:Evidence from a two-sample Mendelian randomization analysis

    Get PDF
    Background It is established that Alzheimer’s disease (AD) patients experience sleep disruption. However, it remains unknown whether disruption in the quantity, quality or timing of sleep is a risk factor for the onset of AD. Methods We used the largest published genome-wide association studies of self-reported and accelerometer-measured sleep traits (chronotype, duration, fragmentation, insomnia, daytime napping and daytime sleepiness), and AD. Mendelian randomization (MR) was used to estimate the causal effect of self-reported and accelerometer-measured sleep parameters on AD risk. Results Overall, there was little evidence to support a causal effect of sleep traits on AD risk. There was some suggestive evidence that self-reported daytime napping was associated with lower AD risk [odds ratio (OR): 0.70, 95% confidence interval (CI): 0.50–0.99). Some other sleep traits (accelerometer-measured ‘eveningness’ and sleep duration, and self-reported daytime sleepiness) had ORs of a similar magnitude to daytime napping, but were less precisely estimated. Conclusions Overall, we found very limited evidence to support a causal effect of sleep traits on AD risk. Our findings provide tentative evidence that daytime napping may reduce AD risk. Given that this is the first MR study of multiple self-report and objective sleep traits on AD risk, findings should be replicated using independent samples when such data become available

    Multi-omics analyses of cognitive traits and psychiatric disorders highlights brain-dependent mechanisms

    Get PDF
    Integrating findings from genome-wide association studies with molecular datasets can develop insight into the underlying functional mechanisms responsible for trait-associated genetic variants. We have applied the principles of Mendelian randomization (MR) to investigate whether brain-derived gene expression (n = 1194) may be responsible for mediating the effect of genetic variants on eight cognitive and psychological outcomes (attention deficit hyperactivity disorder (ADHD), Alzheimer's disease, bipolar disorder, depression, intelligence, insomnia, neuroticism and schizophrenia). Transcriptome-wide analyses identified 83 genes associated with at least one outcome (PBonferroni < 6.72 × 10-6), with multiple-trait colocalization also implicating changes to brain-derived DNA methylation at nine of these loci. Comparing effects between outcomes identified evidence of enrichment which may reflect putative causal relationships, such as an inverse relationship between genetic liability towards schizophrenia risk and cognitive ability in later life. Repeating these analyses in whole blood (n = 31 684), we replicated 58.2% of brain-derived effects (based on P < 0.05). Finally, we undertook phenome-wide evaluations at associated loci to investigate pleiotropic effects with 700 complex traits. This highlighted pleiotropic loci such as FURIN (initially implicated in schizophrenia risk (P = 1.05 × 10-7)) which had evidence of an effect on 28 other outcomes, as well as genes which may have a more specific role in disease pathogenesis (e.g. SLC12A5 which only provided evidence of an effect on depression (P = 7.13 × 10-10)). Our results support the utility of whole blood as a valuable proxy for informing initial target identification but also suggest that gene discovery in a tissue-specific manner may be more informative. Finally, non-pleiotropic loci highlighted by our study may be of use for therapeutic translational endeavours

    Exploring the causal effects of genetic liability to ADHD and Autism on Alzheimer’s disease

    No full text
    Few studies suggest possible links between attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and Alzheimer’s disease but they have been limited by small sample sizes, diagnostic and recall bias. We used two-sample Mendelian randomization (MR) to estimate the bidirectional causal association between genetic liability to ADHD and ASD on Alzheimer’s disease. In addition, we estimated the causal effects independently of educational attainment and IQ, through multivariable Mendelian randomization (MVMR). We employed genetic variants associated with ADHD (20,183 cases/35,191 controls), ASD (18,381 cases/27,969 controls), Alzheimer’s disease (71,880 cases/383,378 controls), educational attainment (n = 766,345) and IQ (n = 269,867) using the largest GWAS of European ancestry. There was limited evidence to suggest a causal effect of genetic liability to ADHD (odds ratio [OR] = 1.00, 95% CI: 0.98–1.02, P = 0.39) or ASD (OR = 0.99, 95% CI: 0.97–1.01, P = 0.70) on Alzheimer’s disease. Similar causal effect estimates were identified as direct effects, independent of educational attainment (ADHD: OR = 1.00, 95% CI: 0.99–1.01, P = 0.76; ASD: OR = 0.99, 95% CI: 0.98–1.00, P = 0.28) and IQ (ADHD: OR = 1.00, 95% CI: 0.99–1.02. P = 0.29; ASD: OR = 0.99, 95% CI: 0.98–1.01, P = 0.99). Genetic liability to Alzheimer’s disease was not found to have a causal effect on risk of ADHD or ASD (ADHD: OR = 1.12, 95% CI: 0.86–1.44, P = 0.37; ASD: OR = 1.19, 95% CI: 0.94–1.51, P = 0.14). We found limited evidence to suggest a causal effect of genetic liability to ADHD or ASD on Alzheimer’s disease; and vice versa

    The causes and consequences of Alzheimer's disease: phenome-wide evidence from Mendelian randomization

    Get PDF
    Alzheimer’s disease (AD) has no proven causal and modifiable risk factors, or effective interventions. We report a phenome-wide association study (PheWAS) of genetic liability for AD in 334,968 participants of the UK Biobank study, stratified by age. We also examined the effects of AD genetic liability on previously implicated risk factors. We replicated these analyses in the HUNT study. PheWAS hits and previously implicated risk factors were followed up in a Mendelian randomization (MR) framework to identify the causal effect of each risk factor on AD risk. A higher genetic liability for AD was associated with medical history and cognitive, lifestyle, physical and blood-based measures as early as 39 years of age. These effects were largely driven by the APOE gene. The follow-up MR analyses were primarily null, implying that most of these associations are likely to be a consequence of prodromal disease or selection bias, rather than the risk factor causing the disease
    corecore