4,210 research outputs found

    The influence of the structure imperfectness of a crystalline undulator on the emission spectrum

    Full text link
    We study the influence of an imperfect structure of a crystalline undulator on the spectrum of the undulator radiation. The main attention is paid to the undulators in which the periodic bending in the bulk appears as a result of a regular (periodic) surface deformations. We demonstrate that this method of preparation of a crystalline undulator inevitably leads to a variation of the bending amplitude over the crystal thickness and to the presence of the subharmonics with smaller bending period. Both of these features noticeably influence the monochromatic pattern of the undulator radiation.Comment: 26 pages, 9 figures, IOP style, submitted to NIM

    Total energy losses due to the radiation in an acoustically based undulator: the undulator and the channeling radiation included

    Get PDF
    This paper is devoted to the investigation of the radiation energy losses of an ultra-relativistic charged particle channeling along a crystal plane which is periodically bent by a transverse acoustic wave. In such a system there are two essential mechanisms leading to the photon emission. The first one is the ordinary channeling radiation. This radiation is generated as a result of the transverse oscillatory motion of the particle in the channel. The second one is the acoustically induced radiation. This radiation is emitted because of the periodic bending of the particle's trajectory created by the acoustic wave. The general formalism described in our work is applicable for the calculation of the total radiative losses accounting for the contributions of both radiation mechanisms. We analyze the relative importance of the two mechanisms at various amplitudes and lengths of the acoustic wave and the energy of the projectile particle. We establish the ranges of projectile particle energies, in which total energy loss is small for the LiH, C, Si, Ge, Fe and W crystals. This result is important for the determination of the projectile particle energy region, in which acoustically induced radiation of the undulator type and also the stimulated photon emission can be effectively generated. The latter effects have been described in our previous works

    Dynamical Screening of Atom Confined by Finite-Width Fullerene

    Full text link
    This is an investigation on the dynamical screening of an atom confined within a fullerene of finite width. The two surfaces of the fullerene lead to the presence of two surface plasmon eigenmodes. It is shown that, in the vicinity of these two eigenfrequencies, there is a large enhancement of the confined atom's photoabsorption rate.Comment: 10 pages, 4 figures correction of figure 2 and equation 1
    • …
    corecore