163 research outputs found

    Tracing the Legitimacy of Artificial Intelligence – A Media Analysis, 1980-2020

    Get PDF
    Artificial Intelligence (AI) has received ambivalent evaluations, ranging from AI as a great opportunity and solution to crucial problems of our time to AI as a threat to humanity. For AI technologies to diffuse, they need to gain legitimacy. We trace the legitimacy of AI in society from 1980 to 2020. For our analysis, we rely on 2,543 newspaper articles from The New York Times as a reflection of societal discourse over the legitimacy of AI. Using computer-assisted content analysis, we find a sharp increase in media coverage around the mid-2010s. We find the language used in the articles to be predominantly positive and to show little changes over time. Our analysis also uncovers six highly discussed industries in the context of AI

    Mass Customization Capabilities in Practice – Introducing the Mass into Customized Tech-Textiles in an SME Network

    Get PDF
    The German textile industry is dominated by small and medium-sized enterprises (SMEs) with limited resources and specialized skills producing customized technical textiles following an engineer-to-order approach. To expand their skills, SMEs form business networks. The development and production of customized technical textiles in networks are highly complex. The coordination requires high effort and results in inefficient and ineffective information flow, weakening the networks’ competitive advantage. Following a case study approach, we accompany an SME network over three years as they develop and implement a digital col-laboration platform. We derived a framework of micro-foundations of Mass Customization capabilities supporting high-order Mass Customization capabilities for customer integration, solution space development, and robust processes. Thus, we present results on how an SME network in the textile industry leverages Mass Customization capabilities to increase efficien-cy via a digital collaboration platform

    A Compromise Approach to Rendering Urban Place Names: the Case of Ekaterinburg

    Get PDF
    The paper describes different approaches to the rendering of urban place names, i.e. the names of different city facilities, and argues for the importance of accuracy in the case of Russian-into-English translation. With the balanced account of the two basic translation methods commonly applied to such vocabulary units — the one that makes use of calquing in accordance with the standards of the target language, and the other based exclusively on the use of transliteration for rendering both the statute and the main part of the toponymic unit — the authors develop and justify a compromise approach to rendering toponyms for the urban navigation system. This new one embraces a number of other translation techniques used alongside with transliteration / translation in rendering place names from Russian into English. In practice, this would provide for easier city navigation for non-native Russian speakers. A detailed description of the methodology of rendering the said units into English is exemplified by the names of different urban facilities of Ekaterinburg. The given methodology has been developed by a group of researchers, including the authors of the paper

    Photoelectrochemical water oxidation properties of bismuth vanadate photoanode irradiated by swift heavy ions

    Get PDF
    Photoelectrochemical (PEC) water splitting is a promising route for solar energy harvesting and storage. The most challenging obstacle for efficient water splitting is development of catalysts for oxygen evolution reaction (OER). Monoclinic bismuth vanadate (BiVO4, BVO) stands out as an excellent photoanode material due to its high stability in near-neutral electrolytes, suitable band structure and low-cost synthesis. However, pronounced charge recombination is a huge limiting factor and understanding the effects contributing to it is important for further improvements. In present study, we report the effect of swift heavy ion (SHI) irradiation (Xe, 150 MeV, 1 × 1010 – 5 × 1011 ions cm-2 ) on physicochemical properties of hydrothermally synthesized BVO thin films. X-ray diffraction (XRD) study showed that irradiated material preserved initial monoclinic scheelite phase and preferential growth along [010] direction together with the presence of notable amorphization at the highest fluence. Scanning electron microscopy (SEM) of all samples showed prismatic grains with an average size of 600 nm with the appearance of ion tracks after irradiation. More detailed examination of 1 × 1010 ions cm-2 irradiated sample by transmission electron microscopy (TEM) revealed presence of amorphous ion tracks (~ 10 nm in diameter) and hillocks at the BVO surface (~ 10 nm in height). Raman spectra showed bands that correspond to the monoclinic scheelite phase as well as the presence of new bands for 5 × 1011 ion cm-2 irradiated sample at 420 and 915 cm-1 that originate from complex vanadium oxides. X-ray photoelectron spectroscopy (XPS) after SHI irradiation showed an increase of V4+ states and oxygen vacancies, especially at higher fluences. Diffuse reflectance spectroscopy (DRS) measurements showed decrease of band gap with the increase of fluence. Photocurrent densities, obtained from 1-hour-long chronoamperometry measurements, showed that irradiation with 1 × 1010 ions cm-2 fluence leads to gradual recovery of PEC oxygen evolution with time. XRD, SEM and XPS measurements performed after PEC reveal complex changes in the BVO, including dissolution of the material along ion tracks.Twenty-First Young Researchers’ Conference - Materials Science and Engineering: Program and the Book of Abstracts; November 29 – December 1, 2023, Belgrade, Serbi

    Influence of N5+ ion irradiation on physicochemical properties of bismuth vanadate

    Get PDF
    Photoelectrochemical (PEC) cells for solar-energy conversion have received huge interest as a promising technology for renewable energy production. For the efficient application of such cells, it is necessary to develop adequate photoelectrodes. Recently, bismuth vanadate (BiVO4) has emerged as a promising photoanode due to its visible light harvesting properties, band edge positions and low-cost of synthesis. In this study, the effects of N5+ ion irradiation (75keV, 2 × 1014 and 4 × 1014 ions/cm2 ) on physicochemical properties of hydrothermally synthesized BiVO4 thin films were examined. From X-ray diffraction (XRD) study can be concluded that initial monoclinic material didn’t sustain any phase transition after irradiation. Also, preferential orientation remained dominantly along [010] direction with a slightly increasing share of [121] oriented growth, especially after irradiation with 2 × 1014 ions/cm2 . XRD measurements showed shift towards the higher 2θ after irradiation which indicates that interplanar distances decreases. The highest level of crystallinity was observed for the sample irradiated with fluence of 4 × 1014 ions/cm2 . Scanning electron microscopy (SEM) revealed prismatic morphology of all samples with an average grain size of 600 nm without visible traces of irradiation.Raman spectroscopy confirmed presence of bands that correspond to the monoclinic scheelite phase. X-ray photoelectron spectroscopy (XPS) analysis of V 2p confirmed presence of V5+ and V4+ while analysis of O 1s confirmed presence of oxygen in the form of lattice oxygen and in the form of hydroxide. UV-Vis Diffuse Reflectance spectroscopy revealed that calculated band gap decreases with the increase of fluence

    Utilization of swift heavy ions for modification of graphene oxide-based nanocomposites

    Get PDF
    Program and book of abstracts / 2nd International Conference on Innovative Materials in Extreme Conditions i. e. (IMEC2024), 20-22 March 2024 Belgrade, Serbia

    The effect of swift heavy ion irradiation on physicochemical properties of monoclinic bismuth vanadate

    Get PDF
    Monoclinic bismuth vanadate (BiVO4) is considered to be one of the most promising photoanode materials for photoelectrochemical (PEC) water splitting due to its suitable band gap and band structure, good stability and low-cost synthesis. However, BiVO4 has poor charge transfer properties due to the high rate of electron-hole recombination and understanding the effects contributing to it is important for further improvements. Herein, we report the effect of swift heavy ion irradiation (Xe, 150 MeV, 1010 – 5×1011 ions/cm2 ) on physicochemical properties of hydrothermally synthesized BiVO4 thin films. X-ray diffraction study (XRD) showed that irradiated material preserved initial monoclinic scheelite crystal phase and preferential growth along [010] direction. As the fluence increased, a shift of the diffraction maxima towards lower 2θ values was observed indicating increased interplanar distances. Also, for the 5×1011 ions/cm2 irradiated sample, high degree of amorphization was noticed. Scanning electron microscopy (SEM) of all samples showed prismatic grains with an average size of 600 nm. In irradiated samples formation of ion tracks, ~10 nm in diameter, was observed. X-ray photoelectron spectroscopy (XPS) analysis of Bi 4f, V 2p and O 1s states showed that, after irradiation, increased amounts of V4+ and oxygen in the form of hydroxide occurred, especially at higher fluences. By using UV-Vis Diffuse Reflectance spectroscopy we showed that band gap decreased with the increase of fluence. Photocurrent densities obtained from linear sweep voltammetry indicated that irradiation with fluences higher than 1010 ions/cm2 have a notable negative effect on PEC oxygen evolution reaction. However, 1-hour-long chronoamperometry measurements of 1010 ions/cm2 irradiated sample revealed an increase of photocurrent densities. In order to get a better insight into preceding phenomena, we performed XRD, SEM and XPS analysis after PEC process

    Physicochemical properties of bismuth vanadate photoanode irradiated by swift heavy ions

    Get PDF
    Program and book of abstracts / 2nd International Conference on Innovative Materials in Extreme Conditions i. e. (IMEC2024), 20-22 March 2024 Belgrade, Serbia

    Organometallic palladium reagents for cysteine bioconjugation

    Get PDF
    Reactions based on transition metals have found wide use in organic synthesis, in particular for the functionalization of small molecules. However, there are very few reports of using transition-metal-based reactions to modify complex biomolecules, which is due to the need for stringent reaction conditions (for example, aqueous media, low temperature and mild pH) and the existence of multiple reactive functional groups found in biomolecules. Here we report that palladium(II) complexes can be used for efficient and highly selective cysteine conjugation (bioconjugation) reactions that are rapid and robust under a range of bio-compatible reaction conditions. The straightforward synthesis of the palladium reagents from diverse and easily accessible aryl halide and trifluoromethanesulfonate precursors makes the method highly practical, providing access to a large structural space for protein modification. The resulting aryl bioconjugates are stable towards acids, bases, oxidants and external thiol nucleophiles. The broad utility of the bioconjugation platform was further corroborated by the synthesis of new classes of stapled peptides and antibody–drug conjugates. These palladium complexes show potential as benchtop reagents for diverse bioconjugation applications.National Institutes of Health (U.S.) (GM-58160)National Institutes of Health (U.S.) (GM-101762)MIT Faculty Start-up FundDamon Runyon Cancer Research FoundationSontag Foundation (Distinguished Scientist Award)Massachusetts Institute of Technology. Dept. of Chemistry (George Buchi Research Fellowship)David H. Koch Institute for Integrative Cancer Research at MIT (Graduate Fellowship in Cancer Research
    corecore