63 research outputs found

    Giga-Gauss scale quasistatic magnetic field generation in an 'escargot' target

    Full text link
    A simple setup for the generation of ultra-intense quasistatic magnetic fields, based on the generation of electron currents with a predefined geometry in a curved 'escargot' target, is proposed and analysed. Particle-In-Cell simulations and qualitative estimates show that giga-Gauss scale magnetic fields may be achieved with existent laser facilities. The described mechanism of the strong magnetic field generation may be useful in a wide range of applications, from laboratory astrophysics to magnetized ICF schemes.Comment: Submitted to PRL. arXiv admin note: text overlap with arXiv:1409.524

    A plasma solenoid driven by an Orbital Angular Momentum laser beam

    Get PDF
    A tens of Tesla quasi-static axial magnetic field can be produced in the interaction of a short intense laser beam carrying an Orbital Angular Momentum with an underdense plasma. Three-dimensional "Particle In Cell" simulations and analytical model demonstrate that orbital angular momentum is transfered from a tightly focused radially polarized laser beam to electrons without any dissipative effect. A theoretical model describing the balistic interaction of electrons with laser shows that particles gain angular velocity during their radial and longitudinal drift in the laser field. The agreement between PIC simulations and the simplified model identifies routes to increase the intensity of the solenoidal magnetic field by controlling the orbital angular momentum and/or the energy of the laser beam

    Gain of electron orbital angular momentum in a direct laser acceleration process

    Get PDF
    Three-dimensional "particle in cell" simulations show that a quasistatic magnetic field can be generated in a plasma irradiated by a linearly polarized Laguerre-Gauss beam with a nonzero orbital angular momentum (OAM). Perturbative analysis of the electron dynamics in the low intensity limit and detailed numerical analysis predict a laser to electrons OAM transfer. Plasma electrons gain angular velocity thanks to the dephasing process induced by the combined action of the ponderomotive force and the laser induced-radial oscillation Similar to the "direct laser acceleration," where Gaussian laser beams transmit part of its axial momentum to electrons, Laguerre-Gaussian beams transfer a part of their orbital angular momentum to electrons through the dephasing process

    Landau damping in thin films irradiated by a strong laser field

    Full text link
    The rate of linear collisionless damping (Landau damping) in a classical electron gas confined to a heated ionized thin film is calculated. The general expression for the imaginary part of the dielectric tensor in terms of the parameters of the single-particle self-consistent electron potential is obtained. For the case of a deep rectangular well, it is explicitly calculated as a function of the electron temperature in the two limiting cases of specular and diffuse reflection of the electrons from the boundary of the self-consistent potential. For realistic experimental parameters, the contribution of Landau damping to the heating of the electron subsystem is estimated. It is shown that for films with a thickness below about 100 nm and for moderate laser intensities it may be comparable with or even dominate over electron-ion collisions and inner ionization.Comment: 15 pages, 2 figure

    Melting Point and Lattice Parameter Shifts in Supported Metal Nanoclusters

    Full text link
    The dependencies of the melting point and the lattice parameter of supported metal nanoclusters as functions of clusters height are theoretically investigated in the framework of the uniform approach. The vacancy mechanism describing the melting point and the lattice parameter shifts in nanoclusters with decrease of their size is proposed. It is shown that under the high vacuum conditions (p<10^-7 torr) the essential role in clusters melting point and lattice parameter shifts is played by the van der Waals forces of cluster-substrate interation. The proposed model satisfactorily accounts for the experimental data.Comment: 6 pages, 3 figures, 1 tabl

    Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС элСктроискровых ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… с использованиСм элСктродов TiC–NiCr ΠΈ TiC–NiCr–Eu2O3

    Get PDF
    The study covers coatings obtained on 40Kh steel substrates by electro-spark deposition (ESD) using TiC–NiCr and TiC–NiCr– Eu2O3 electrodes. Coatings were deposited by the Alier-Metal 303 unit in argon environment under the normal pressure using direct and opposite polarity. The structure, elemental and phase composition of electrodes and coatings were studied using X-ray phase analysis, scanning electron microscopy, energy dispersive spectroscopy, glow discharge optical emission spectroscopy, and optical profilometry. Mechanical and tribological properties of coatings were determined by nanoindentation and testing according to the Β«pin-diskΒ» scheme including high-temperature conditions in the range of 20–500 Β°C. The tests conducted include abrasive wear tests using the Calowear tester, impact resistance tests using the CemeCon impact tester, and tests for gas and electrochemical corrosion resistance. Test results showed that electrodes contain titanium carbide, nickel-chromium solid solution, and europium oxide in case of a doped sample. Coatings exhibit the same phase composition but solid solution is formed on the iron base. Coatings with the Eu2O3 additive do not differ significantly in structural characteristics, hardness, friction coefficient, and exceed the base coatings in terms of their abrasive resistance, repeated impact resistance, heat and corrosion resistance. There was an increase in impact resistance by 1.2–2.0 times, a decrease in corrosion current by more than 20 times, and an oxidation index by almost 2 times during the transition to doped coatings.Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ покрытия, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π½Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ°Ρ… ΠΈΠ· стали 40Π₯ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСктроискрового лСгирования с использованиСм элСктродов TiC–NiCr ΠΈ TiC–NiCr–Eu2O3. ΠŸΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΡ наносились с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ установки Β«Alier-Metal 303Β» Π² срСдС Π°Ρ€Π³ΠΎΠ½Π° ΠΏΡ€ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌ Π΄Π°Π²Π»Π΅Π½ΠΈΠΈ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ прямой ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ полярности. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π°, элСмСнтный ΠΈ Ρ„Π°Π·ΠΎΠ²Ρ‹ΠΉ составы элСктродов ΠΈ ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ Π±Ρ‹Π»ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹ посрСдством Ρ€Π΅Π½Ρ‚Π³Π΅Π½ΠΎΡ„Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°, растровой элСктронной микроскопии, энСргодиспСрсионной спСктроскопии, оптичСской эмиссионной спСктроскопии Ρ‚Π»Π΅ΡŽΡ‰Π΅Π³ΠΎ разряда ΠΈ оптичСской ΠΏΡ€ΠΎΡ„ΠΈΠ»ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠœΠ΅Ρ…Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ ΠΈ трибологичСскиС свойства ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ»ΠΈΡΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ наноиндСнтирования ΠΈ ΠΏΡƒΡ‚Π΅ΠΌ испытаний ΠΏΠΎ схСмС Β«ΡΡ‚Π΅Ρ€ΠΆΠ΅Π½ΡŒβ€“Π΄ΠΈΡΠΊΒ», Π² Ρ‚ΠΎΠΌ числС ΠΏΡ€ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹Ρ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 20–500 Β°Π‘. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ исслСдования Π½Π° Π°Π±Ρ€Π°Π·ΠΈΠ²Π½Ρ‹ΠΉ износ с использованиСм ΠΏΡ€ΠΈΠ±ΠΎΡ€Π° Β«Calowear-testerΒ», ΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ ΠΊ динамичСским воздСйствиям с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ установки Β«CemeCon impact-testerΒ» ΠΈ ΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ ΠΊ Π³Π°Π·ΠΎΠ²ΠΎΠΉ ΠΈ элСктрохимичСской ΠΊΠΎΡ€Ρ€ΠΎΠ·ΠΈΠΈ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ элСктроды содСрТат ΠΊΠ°Ρ€Π±ΠΈΠ΄ Ρ‚ΠΈΡ‚Π°Π½Π°, Ρ‚Π²Π΅Ρ€Π΄Ρ‹ΠΉ раствор никСля Π² Ρ…Ρ€ΠΎΠΌΠ΅ ΠΈ оксид Свропия Π² случаС Π΄ΠΎΠΏΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΠ±Ρ€Π°Π·Ρ†Π°. ΠŸΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΡ Ρ‚Π°ΠΊΠΆΠ΅ Π²ΠΊΠ»ΡŽΡ‡Π°Π»ΠΈ Π΄Π°Π½Π½Ρ‹Π΅ Ρ„Π°Π·Ρ‹, ΠΎΠ΄Π½Π°ΠΊΠΎ Ρ‚Π²Π΅Ρ€Π΄Ρ‹ΠΉ раствор формировался Π½Π° основС ΠΆΠ΅Π»Π΅Π·Π°. ΠŸΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΡ с Π΄ΠΎΠ±Π°Π²ΠΊΠΎΠΉ Eu2O3 ΠΏΠΎ структурным характСристикам, твСрдости, коэффициСнту трСния сущСствСн- Π½ΠΎ Π½Π΅ ΠΎΡ‚Π»ΠΈΡ‡Π°Π»ΠΈΡΡŒ, Π° ΠΏΠΎ стойкости ΠΊ Π°Π±Ρ€Π°Π·ΠΈΠ²Π½ΠΎΠΌΡƒ износу ΠΈ ΠΊ цикличСским ΡƒΠ΄Π°Ρ€Π½Ρ‹ΠΌ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠ°ΠΌ, ΠΆΠ°Ρ€ΠΎ- ΠΈ ΠΊΠΎΡ€Ρ€ΠΎΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ стойкости прСвосходили Π±Π°Π·ΠΎΠ²Ρ‹Π΅ покрытия. Наблюдались ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ стойкости ΠΊ ΡƒΠ΄Π°Ρ€Π½Ρ‹ΠΌ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠ°ΠΌ Π² 1,2–2,0 Ρ€Π°Π·Π°, ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΠΊΠ° ΠΊΠΎΡ€Ρ€ΠΎΠ·ΠΈΠΈ Π±ΠΎΠ»Π΅Π΅ Ρ‡Π΅ΠΌ Π² 20 Ρ€Π°Π· ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ показатСля окислСния ΠΏΠΎΡ‡Ρ‚ΠΈ Π² 2 Ρ€Π°Π·Π° ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅ ΠΊ Π΄ΠΎΠΏΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ покрытиям
    • …
    corecore