2 research outputs found

    Enzyme production of D-gluconic acid and glucose oxidase : successful tales of cascade reactions

    Get PDF
    This review mainly focuses on the use of glucose oxidase in the production of D-gluconic acid, which is a reactant of undoubtable interest in different industrial areas. The enzyme has been used in numerous instances as a model reaction to study the problems of oxygen supply in bioreactors. One of the main topics in this review is the problem of the generated side product, hydrogen peroxide, as it is an enzymeinactivating reagent. Different ways to remove hydrogen peroxide have been used, such as metal catalysts and use of whole cells; however, the preferred method is the coupling glucose oxidase with catalase. The different possibilities of combining these enzymes have been discussed (use of free enzymes, independently immobilized enzymes or co-immobilized enzymes). Curiously, some studies propose the addition of hydrogen peroxide to this co-immobilized enzyme system to produce oxygen in situ. Other cascade reactions directed toward the production of gluconic acid from polymeric substrates will be presented; these will mainly involve the transformation of polysaccharides (amylases, cellulases, etc.) but will not be limited to those (e.g., gluconolactonase). In fact, glucose oxidase is perhaps one of most successful enzymes, and it is involved in a wide range of cascade reactions. Finally, other applications of the enzyme have been reviewed, always based on the production of D-gluconic acid, which produces a decrease in the pH, a decrease in the oxygen availability or the production of hydrogen peroxide; in many instances, cascade reactions are also utilized. Thus, this review presents many different cascade reactions and discusses the advantages/drawbacks of the use of co-immobilized enzymes

    Stability/activity features of the main enzyme components of rohapect 10L

    No full text
    Rohapect 10L is an enzyme cocktail commercialized for juice clarification. Here, we characterized the activity and stability of five enzymatic activities present in this cocktail: total pectinase (PE), polygalacturonase (PG), pectin lyase (PL), pectin methyl esterase (PME), and total cellulase (CE) activities. All these enzyme activities have the maximum activity and stability at pH 4, conditions near those found in most fruit juices. However, if the enzymes need to be handled under different conditions (e.g., to immobilize them), their stability becomes extremely low in some cases, just at pH values slightly higher than the optimal one. For example, at pH 10 only CE was reasonably stable at 25 C, while many other enzyme activities were rapidly almost inactivated, even at 4 C. For these cases, different additives were evaluated, and we found that polyethylene glycol was positive or very positive for all enzyme stabilities, allowing keeping reasonable activities after several hours at pH 10 and 25 C. Another additive, that is, dextran, has a small positive effect for PE, PG, and CE, and a very positive effect for PL, albeit significantly destabilizing PME. Thus, the handling and use of this extract requires some care when is performed out of optimal conditions
    corecore