5 research outputs found

    Platelet Imaging

    Get PDF
    The knowledge gained through imaging platelets has formed the backbone of our understanding of their biology in health and disease. Early investigators relied on conventional light microscopy with limited resolution and were primarily able to identify the presence and basic morphology of platelets. The advent of high resolution technologies, in particular, electron microscopy, accelerated our understanding of the dynamics of platelet ultrastructure dramatically. Further refinements and improvements in our ability to localize and reliably identify platelet structures have included the use of immune-labeling techniques, correlative-fluorescence light and electron microscopy, and super-resolution microscopies. More recently, the expanded development and application of intravital microscopy in animal models has enhanced our knowledge of platelet functions and thrombus formation in vivo, as these experimental systems most closely replicate native biological environments. Emerging improvements in our ability to characterize platelets at the ultrastructural and organelle levels include the use of platelet cryogenic electron tomography with quantitative, unbiased imaging analysis, and the ability to genetically label platelet features with electron dense markers for analysis by electron microscopy

    Identification of injury and shock driven effects on ex vivo platelet aggregometry: A cautionary tale of phenotyping.

    No full text
    BackgroundPlatelet behavior in trauma-induced coagulopathy is poorly understood. Injured patients have impaired platelet aggregation (dysfunction) in ex vivo agonist-stimulated platelet aggregometry (PA). However, PA assumes that platelets are inactivated before ex vivo stimulated aggregation, which may be altered by injury. We hypothesized that following trauma, platelet aggregation (area under the curve) is decreased regardless of injury burden, but that (1) minor injury is associated with an increased baseline electrical impedance, characteristic of a functional platelet phenotype (platelets that activate in response to injury), and that (2) severe injury is not associated with an increased baseline electrical impedance, characteristic of a dysfunctional phenotype (platelets that do not activate well in response to injury) compared with healthy controls.MethodsBlood from 458 trauma patients and 30 healthy donors was collected for PA. Baseline electrical impedance (Ω); platelet aggregation stimulated by adenosine diphosphate, collagen, thrombin, and arachidonic acid; and rotational thromboelastometry were measured. Multivariate regression was performed to identify associations of PA measures with blood transfusion.ResultsCompared with healthy controls, injured patients had impaired platelet aggregation in response to ex vivo stimulation, regardless of injury burden. However, minorly injured patients had increased endogenous platelet activation (baseline electrical impedance, Ω: with shock, p = 0.012; without shock, p = 0.084), but severely injured patients did not have significant increases in endogenous platelet activation (baseline electrical impedance, Ω: with shock, p = 0.86; without shock, p = 0.37). For every 10 Ω increase in baseline electrical impedance, there was an 8% decrease in units of blood transfused in the first 24 h (-0.08; confidence interval, -0.14 to -0.02; p = 0.015).ConclusionInjury and shock confer differential patterns of platelet aggregation in PA. Minor injury overestimates the presence of platelet dysfunction, while severe injury induces a truly dysfunctional phenotype-platelets that do not activate nor aggregate appropriately after injury. This is consequential in improving accurate phenotyping of postinjury platelet behavior for platelet-based therapeutics.Level of evidencePrognostic, level IV

    A journey upstream: Fluctuating platelet-specific genes in cell-free plasma as proof-of-concept for using ribonucleic acid sequencing to improve understanding of postinjury platelet biology.

    No full text
    BackgroundThe mechanisms of aberrant circulating platelet behavior following injury remain unclear. Platelets retain megakaryocyte immature ribonucleic acid (RNA) splicing and protein synthesis machinery to alter their functions based on physiologic signals. We sought to identify fluctuating platelet-specific RNA transcripts in cell-free plasma (CFP) from traumatic brain injury (TBI) patients as proof-of-concept for using RNA sequencing to improve our understanding of postinjury platelet behavior. We hypothesized that we could identify differential expression of activated platelet-specific spliced RNA transcripts from CFP of patients with isolated severe fatal TBI (fTBI) compared with minimally injured trauma controls (t-controls), filtered by healthy control (h-control) data sets.MethodsHigh-read depth RNA sequencing was applied to CFP from 10 patients with fTBI (Abbreviated Injury Scale [AIS] for head ≥3, AIS for all other categories <3, and expired) and five t-controls (Injury Severity Score ≤1, and survived). A publicly available CFP RNA sequencing data set from 23 h-controls was used to determine the relative steady state of splice-form RNA transcripts discoverable in CFP. Activated platelet-specific spliced RNA transcripts were derived from studies of ex vivo platelet activation and identified by splice junction presence greater than 1.5-fold or less than 0.67-fold ex vivo nonactivated platelet-specific RNA transcripts.ResultsForty-two differentially spliced activated platelet-specific RNA transcripts in 34 genes were altered in CFP from fTBI patients (both upregulated and downregulated).ConclusionWe have discovered differentially expressed activated platelet-specific spliced RNA transcripts present in CFP from isolated severe fTBI patients that are upregulated or downregulated compared with minimally injured trauma controls. This proof-of-concept suggests that a pool of immature platelet RNAs undergo splicing events after injury for presumed modulation of platelet protein products involved in platelet function. This validates our exploration of injury-induced platelet RNA transcript modulation as an upstream "liquid biopsy" to identify novel postinjury platelet biology and treatment targets for aberrant platelet behavior.Level of evidenceDiagnostic tests, level V

    A new trauma frontier: Exploratory pilot study of platelet transcriptomics in trauma patients.

    No full text
    BackgroundThe earliest measurable changes to postinjury platelet biology may be in the platelet transcriptome, as platelets are known to carry messenger ribonucleic acids (RNAs), and there is evidence in other inflammatory and infectious disease states of differential and alternative platelet RNA splicing in response to changing physiology. Thus, the aim of this exploratory pilot study was to examine the platelet transcriptome and platelet RNA splicing signatures in trauma patients compared with healthy donors.MethodsPreresuscitation platelets purified from trauma patients (n = 9) and healthy donors (n = 5) were assayed using deep RNA sequencing. Differential gene expression analysis, weighted gene coexpression network analysis, and differential alternative splicing analyses were performed. In parallel samples, platelet function was measured with platelet aggregometry, and clot formation was measured with thromboelastography.ResultsDifferential gene expression analysis identified 49 platelet RNAs to have differing abundance between trauma patients and healthy donors. Weighted gene coexpression network analysis identified coexpressed platelet RNAs that correlated with platelet aggregation. Differential alternative splicing analyses revealed 1,188 splicing events across 462 platelet RNAs that were highly statistically significant (false discovery rate <0.001) in trauma patients compared with healthy donors. Unsupervised principal component analysis of these platelet RNA splicing signatures segregated trauma patients in two main clusters separate from healthy controls.ConclusionOur findings provide evidence of finetuning of the platelet transcriptome through differential alternative splicing of platelet RNA in trauma patients and that this finetuning may have relevance to downstream platelet signaling. Additional investigations of the trauma platelet transcriptome should be pursued to improve our understanding of the platelet functional responses to trauma on a molecular level
    corecore