6,557 research outputs found

    Directional photoelectric current across the bilayer graphene junction

    Full text link
    A directional photon-assisted resonant chiral tunneling through a bilayer graphene barrier is considered. An external electromagnetic field applied to the barrier switches the transparency TT in the longitudinal direction from its steady state value T=0 to the ideal T=1 at no energy costs. The switch happens because the a.c. field affects the phase correlation between the electrons and holes inside the graphene barrier changing the whole angular dependence of the chiral tunneling (directional photoelectric effect). The suggested phenomena can be implemented in relevant experiments and in various sub-millimeter and far-infrared optical electronic devices.Comment: 7 pages 5 figure

    Static deformation of heavy spring due to gravity and centrifugal force

    Full text link
    The static equilibrium deformation of a heavy spring due to its own weight is calculated for two cases. First for a spring hanging in a constant gravitational field, then for a spring which is at rest in a rotating system where it is stretched by the centrifugal force. Two different models are considered. First a discrete model assuming a finite number of point masses connected by springs of negligible weight. Then the continuum limit of this model. In the second case the differential equation for the deformation is obtained by demanding that the potential energy is minimized. In this way a simple application of the variational calculus is obtained.Comment: 11 pages, 2 figure

    Bichiral structure of feroelectric domain wall driven by flexoelectricity

    Get PDF
    The influence of flexoelectric coupling on the internal structure of neutral domain walls in tetragonal phase of perovskite ferroelectrics is studied. The effect is shown to lower the symmetry of 180-degree walls which are oblique with respect to the cubic crystallographic axes, while {100} and {110} walls stay "untouched". Being of the Ising type in the absence of the flexoelectric interaction, the oblique domain walls acquire a new polarization component with a structure qualitatively different from the classical Bloch-wall structure. In contrast to the Bloch-type walls, where the polarization vector draws a helix on passing from one domain to the other, in the flexoeffect-affected wall, the polarization rotates in opposite directions on the two sides of the wall and passes through zero in its center. Since the resulting polarization profile is invariant upon inversion with respect to the wall center it does not brake the wall symmetry in contrast to the classical Bloch-type walls. The flexoelectric coupling lower the domain wall energy and gives rise to its additional anisotropy that is comparable to that conditioned by the elastic anisotropy. The atomic orderof- magnitude estimates shows that the new polarization component P2 may be comparable with spontaneous polarization Ps, thus suggesting that, in general, the flexoelectric coupling should be mandatory included in domain wall simulations in ferroelectrics. Calculations performed for barium titanate yields the maximal value of the P2, which is much smaller than that of the spontaneous polarization. This smallness is attributed to an anomalously small value of a component of the "strain-polarization" elecrostictive tensor in this material

    Nonlinear dynamics of two coupled nano-electromechanical resonators

    Full text link
    As a model of coupled nano-electromechanical resonantors we study two nonlinear driven oscillators with an arbitrary coupling strength between them. Analytical expressions are derived for the oscillation amplitudes as a function of the driving frequency and for the energy transfer rate between the two oscillators. The nonlinear restoring forces induce the expected nonlinear resonance structures in the amplitude-frequency characteristics with asymmetric resonance peaks. The corresponding multistable behavior is shown to be an efficient tool to control the energy transfer arising from the sensitive response to small changes in the driving frequency. Our results imply that the nonlinear response can be exploited to design precise sensors for mass or force detection experiments based on nano-electromechanical resonators.Comment: 19 pages, 2 figure

    Cyclotron effect on coherent spin precession of two-dimensional electrons

    Full text link
    We investigate the spin dynamics of high-mobility two-dimensional electrons in GaAs/AlGaAs quantum wells grown along the [001][001] and [110][110] directions by time-resolved Faraday rotation at low temperatures. In measurements on the (001)(001)-grown structures without external magnetic fields, we observe coherent oscillations of the electron spin polarization about the effective spin-orbit field. In non-quantizing magnetic fields applied normal to the sample plane, the cyclotron motion of the electrons rotates the effective spin-orbit field. This rotation leads to fast oscillations in the spin polarization about a non-zero value and a strong increase in the spin dephasing time in our experiments. These two effects are absent in the (110)(110)-grown structure due to the different symmetry of its effective spin-orbit field. The measurements are in excellent agreement with our theoretical model.Comment: 4 pages, 3 figure

    The Gaia-ESO Survey: the selection function of the Milky Way field stars

    Get PDF
    The Gaia-ESO Survey was designed to target all major Galactic components (i.e., bulge, thin and thick discs, halo and clusters), with the goal of constraining the chemical and dynamical evolution of the Milky Way. This paper presents the methodology and considerations that drive the selection of the targeted, allocated and successfully observed Milky Way field stars. The detailed understanding of the survey construction, specifically the influence of target selection criteria on observed Milky Way field stars is required in order to analyse and interpret the survey data correctly. We present the target selection process for the Milky Way field stars observed with VLT/FLAMES and provide the weights that characterise the survey target selection. The weights can be used to account for the selection effects in the Gaia-ESO Survey data for scientific studies. We provide a couple of simple examples to highlight the necessity of including such information in studies of the stellar populations in the Milky Way.Comment: 18 pages, 19 figures, Accepted for publication in MNRAS (April 25, 2016
    • …
    corecore