11 research outputs found

    Scan-less full-field fluorescence-lifetime dual-comb microscopy using two-dimensional spectral mapping and frequency multiplexing of dual-optical-comb beats

    Full text link
    Fluorescence lifetime imaging microscopy (FLIM) is a powerful tool for quantitative fluorescence imaging because fluorescence lifetime is independent of concentration of fluorescent molecules or excitation/detection efficiency and is robust to photobleaching. However, since FLIM is based on point-to-point measurements, mechanical scanning of a focal spot is needed for forming an image, which hampers rapid imaging. In this article, we demonstrate scan-less full-field FLIM based on a one-to-one correspondence between two-dimensional (2D) image pixels and frequency-multiplexed RF signals. A vast number of dual-optical-comb beats between dual optical frequency combs is effectively adopted for 2D spectral mapping and high-density frequency multiplexing in radio-frequency region. Bimodal images of fluorescence amplitude and lifetime are obtained with high quantitativeness from amplitude and phase spectra of fluorescence RF comb modes without the need for mechanical scanning. The proposed method will be useful for rapid quantitative fluorescence imaging in life science.Comment: 38 pages, 8 figures, 1 tabl

    Optical image amplification in dualcomb microscopy

    Get PDF
    Dual-comb microscopy (DCM), based on a combination of dual-comb spectroscopy (DCS) with two-dimensional spectral encoding (2D-SE), is a promising method for scan-less confocal laser microscopy giving an amplitude and phase image contrast with the confocality. However, signal loss in a 2D-SE optical system hampers increase in image acquisition rate due to decreased signal-to-noise ratio. In this article, we demonstrated optical image amplification in DCM with an erbium-doped fiber amplifier (EDFA). Combined use of the image-encoded DCS interferogram and the EDFA benefits from not only the batch amplification of amplitude and phase images but also significant rejection of amplified spontaneous emission (ASE) background. Effectiveness of the optical-image-amplified DCM is highlighted in the single-shot quantitative nanometer-order surface topography and the real-time movie of polystyrene beads dynamics under water convection. The proposed method will be a powerful tool for real-time observation of surface topography and fast dynamic phenomena

    Visualization of internal structure and internal stress in visibly opaque objects using full-field phase-shifting terahertz digital holography

    Get PDF
    We construct a full-field phase-shifting terahertz digital holography (PS-THz-DH) system by use of a THz quantum cascade laser and an uncooled, 2D micro-bolometer array. The PS-THz-DH enables us to separate the necessary diffraction-order image from unnecessary diffraction-order images without the need for spatial Fourier filtering, leading to suppress the decrease of spatial resolution. 3D shape of a visibly opaque object is visualized with a sub-millimeter lateral resolution and a sub-μm axial resolution. Also, the digital focusing of amplitude image enables the visualization of internal structure with the millimeter-order axial selectivity. Furthermore, the internal stress distribution of an externally compressed object is visualized from the phase image. The demonstrated results imply a possibility for non-destructive inspection of visibly opaque non-metal materials

    Improvement of dynamic range and repeatability in refractive-index-sensing optical comb by combination of saturable-absorber-mirror mode-locking with intracavity multi-mode interference fiber sensor

    Get PDF
    Mode-locked fiber comb equipped with multi-mode-interference fiber sensor functions as high-precision refractive-index (RI) sensor benefitting from precise radio-frequency measurement. However, its dynamic range and repeatability are hampered by inherent characteristics in nonlinear-polarization-rotation mode-locking oscillation. In this article, we introduce saturable-absorber-mirror mode-locking for RI sensing with wide dynamic range and high repeatability. While the RI dynamic range was expanded to 41.4 dB due to high robustness to cavity disturbance, self-starting capability without the need for polarization control improves the RI sensing repeatability to 1.10×10-8 every mode-locking activation. Improved dynamic range and repeatability will be useful for enhanced performance of RI sensing

    Refractive index sensing with temperature compensation by a multimode-interference fiber-based optical frequency comb sensing cavity

    Get PDF
    We proposed a refractive index (RI) sensing method with temperature compensation by using an optical frequency comb (OFC) sensing cavity including a multimode-interference (MMI) fiber, namely, the MMI-OFC sensing cavity. The MMI-OFC sensing cavity enables simultaneous measurement of material-dependent RI and sample temperature by decoding from the comb spacing frequency shift and the wavelength shift of the OFC. We realized the simultaneous and continuous measurement of RI-related concentration of a liquid sample and its temperature with precisions of 1.6 × 10−4 RIU and 0.08 °C. The proposed method would be a useful means for the various applications based on RI sensing

    Real-time hybrid angular-interrogation surface plasmon resonance sensor in the near-infrared region for wide dynamic range refractive index sensing

    No full text
    Abstract Herein, we integrated angle-scanning surface plasmon resonance (SPR) and angle-fixed SPR as a hybrid angular-interrogation SPR to enhance the sensing performance. Galvanometer-mirror-based beam angle scanning achieves a 100-Hz acquisition rate of both the angular SPR reflectance spectrum and the angle-fixed SPR reflectance, whereas the use of near-infrared light enhances the refractive index (RI) sensitivity, range, and precision compared with visible light. Simultaneous measurement of the angular SPR reflectance spectrum and angle-fixed SPR reflectance boosts the RI change range, RI resolution, and RI accuracy to 10–1–10–6 RIU, 2.24 × 10−6 RIU, and 5.22 × 10−6 RIU, respectively. The proposed hybrid SPR is a powerful tool for wide-dynamic-range RI sensing with various applications

    Rapid, high-sensitivity detection of biomolecules using dual-comb biosensing

    No full text
    Abstract Rapid, sensitive detection of biomolecules is important for biosensing of infectious pathogens as well as biomarkers and pollutants. For example, biosensing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still strongly required for the fight against coronavirus disease 2019 (COVID-19) pandemic. Here, we aim to achieve the rapid and sensitive detection of SARS-CoV-2 nucleocapsid protein antigen by enhancing the performance of optical biosensing based on optical frequency combs (OFC). The virus-concentration-dependent optical spectrum shift produced by antigen–antibody interactions is transformed into a photonic radio-frequency (RF) shift by a frequency conversion between the optical and RF regions in the OFC, facilitating rapid and sensitive detection with well-established electrical frequency measurements. Furthermore, active-dummy temperature-drift compensation with a dual-comb configuration enables the very small change in the virus-concentration-dependent signal to be extracted from the large, variable background signal caused by temperature disturbance. The achieved performance of dual-comb biosensing will greatly enhance the applicability of biosensors to viruses, biomarkers, environmental hormones, and so on
    corecore