91 research outputs found

    Application of polarization ellipse technique for analysis of ULF magnetic fields from two distant stations in Koyna-Warna seismoactive region, West India

    Get PDF
    A new approach is developed to find the source azimuth of the ultra low frequency (ULF) electromagnetic (EM) signals believed to be emanating from well defined seismic zone. The method is test applied on magnetic data procured from the seismoactive region of Koyna-Warna, known for prolonged reservoir triggered seismicity. Extremely low-noise, high-sensitivity LEMI-30 search coil magnetometers were used to measure simultaneously the vector magnetic field in the frequency range 0.001–32 Hz at two stations, the one located within and another ~100 km away from the seismic active zone. During the observation campaign extending from 15 March to 30 June 2006 two earthquakes (EQs) of magnitude (M<sub><I>L</I></sub>>4) occurred, which are searched for the presence of precursory EM signals. <br><br> Comparison of polarization ellipses (PE) parameters formed by the magnetic field components at the measurement stations, in select frequency bands, allows discrimination of seismo-EM signals from the natural background ULF signals of magnetospheric/ionospheric origin. The magnetic field components corresponding to spectral bands dominated by seismo-EM fields define the PE plane which at any instant contains the source of the EM fields. Intersection lines of such defined PE planes for distant observation stations clutter in to the source region. Approximating the magnetic-dipole configuration for the source, the magnetic field components along the intersection lines suggest that azimuth of the EM source align in the NNW-SSE direction. This direction well coincides with the orientation of nodal plane of normal fault plane mechanism for the two largest EQs recorded during the campaign. More significantly the correspondence of this direction with the tectonic controlled trend in local seismicity, it has been surmised that high pressure fluid flow along the fault that facilitate EQs in the region may also be the source mechanism for EM fields by electrokinetic effect

    Transfer matrix eigenvectors of the Baxter-Bazhanov-Stroganov τ2\tau_2-model for N=2

    Get PDF
    We find a representation of the row-to-row transfer matrix of the Baxter-Bazhanov-Stroganov τ2\tau_2-model for N=2 in terms of an integral over two commuting sets of grassmann variables. Using this representation, we explicitly calculate transfer matrix eigenvectors and normalize them. It is also shown how form factors of the model can be expressed in terms of determinants and inverses of certain Toeplitz matrices.Comment: 23 page

    Factorized finite-size Ising model spin matrix elements from Separation of Variables

    Full text link
    Using the Sklyanin-Kharchev-Lebedev method of Separation of Variables adapted to the cyclic Baxter--Bazhanov--Stroganov or τ(2)\tau^{(2)}-model, we derive factorized formulae for general finite-size Ising model spin matrix elements, proving a recent conjecture by Bugrij and Lisovyy

    Fermionic R-Operator and Integrability of the One-Dimensional Hubbard Model

    Full text link
    We propose a new type of the Yang-Baxter equation (YBE) and the decorated Yang-Baxter equation (DYBE). Those relations for the fermionic R-operator were introduced recently as a tool to treat the integrability of the fermion models. Using the YBE and the DYBE for the XX fermion model, we construct the fermionic R-operator for the one-dimensional (1D) Hubbard model. It gives another proof of the integrability of the 1D Hubbard model. Furthermore a new approach to the SO(4) symmetry of the 1D Hubbard model is discussed.Comment: 25 page

    Dark Matter Search Perspectives with GAMMA-400

    Full text link
    GAMMA-400 is a future high-energy gamma-ray telescope, designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of dark matter particles, and to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to ~3000 GeV. Its angular resolution is ~0.01 deg(Eg > 100 GeV), and the energy resolution ~1% (Eg > 10 GeV). GAMMA-400 is planned to be launched on the Russian space platform Navigator in 2019. The GAMMA-400 perspectives in the search for dark matter in various scenarios are presented in this paperComment: 4 pages, 4 figures, submitted to the Proceedings of the International Cosmic-Ray Conference 2013, Brazil, Rio de Janeir

    The GAMMA-400 space observatory: status and perspectives

    Get PDF
    The present design of the new space observatory GAMMA-400 is presented in this paper. The instrument has been designed for the optimal detection of gamma rays in a broad energy range (from ~100 MeV up to 3 TeV), with excellent angular and energy resolution. The observatory will also allow precise and high statistic studies of the electron component in the cosmic rays up to the multi TeV region, as well as protons and nuclei spectra up to the knee region. The GAMMA-400 observatory will allow to address a broad range of science topics, like search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts and charged cosmic rays acceleration and diffusion mechanism up to the knee

    A separation of electrons and protons in the GAMMA-400 gamma-ray telescope

    Full text link
    The GAMMA-400 gamma-ray telescope is intended to measure the fluxes of gamma rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. Such measurements concern with the following scientific goals: search for signatures of dark matter, investigation of gamma-ray point and extended sources, studies of the energy spectra of Galactic and extragalactic diffuse emission, studies of gamma-ray bursts and gamma-ray emission from the active Sun, as well as high-precision measurements of spectra of high-energy electrons and positrons, protons, and nuclei up to the knee. The main components of cosmic rays are protons and helium nuclei, whereas the part of lepton component in the total flux is ~10E-3 for high energies. In present paper, the capability of the GAMMA-400 gamma-ray telescope to distinguish electrons and positrons from protons in cosmic rays is investigated. The individual contribution to the proton rejection is studied for each detector system of the GAMMA-400 gamma-ray telescope. Using combined information from all detector systems allow us to provide the proton rejection from electrons with a factor of ~4x10E5 for vertical incident particles and ~3x10E5 for particles with initial inclination of 30 degrees. The calculations were performed for the electron energy range from 50 GeV to 1 TeV.Comment: 19 pages, 10 figures, submitted to Advances and Space Researc
    corecore