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1. Preliminaries

The τ2-model was originally introduced by Baxter in the work [1], where it appeared

in relation to the superintegrable case of the chiral Potts model. Later it was used

by Bazhanov and Stroganov to establish a connection between six-vertex model and

chiral Potts model [7] (see also [19]). This connection has allowed to obtain a system of

functional relations for transfer matrices of these models [2] and has led to the derivation

of exact formulas for the free energy [3] and order parameter [4] of the chiral Potts model.

Following the authors of [11, 16], we will use instead of the name ‘τ2-model’ the name

‘Baxter-Bazhanov-Stroganov model’ (or simply ‘BBS model’).

BBS model is a system of spins, living on a square lattice and taking on N values

0, 1, . . . , N − 1. The interactions exist only between nearest neighbours. In addition,

the difference b2 − b1 of neighbouring spins, living on the same vertical line (b2 is

higher than b1) is allowed to take on only the values 0 and 1 (mod N). Consider

an elementary plaquette of the lattice, drawn in the Figure 1a. Boltzmann weights

W (b1, b2, b3, b4), associated to this plaquette, are defined in the following table (our b1,

b2, b3, b4 correspond to d, a, b, c of [5] and to b4, b1, b2, b3 of [11]):
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b2 − b1 b3 − b4 W (b1, b2, b3, b4)

0 0 1− ωb1−b3+1t/(yy′)
0 1 (y − ωb1−b3+1x′)µ′/(yy′)
1 0 −(y′ − ωb1−b3+1x)ωµt/(yy′)
1 1 −(t− ωb1−b3+1xx′)ωµµ′/(yy′)

Here ω = e2πi/N and t, x, x′, y, y′, µ, µ′ are parameters. It is easily seen that the model is

ZN -symmetric: if one shifts the spins b1, . . . , b4 by 1, all plaquette Boltzmann weights

remain unchanged.

Figure 1: a) numeration of spins of an elementary plaquette b) graphical representation of the
transfer matrix

Consider now the case N = 2. Let us use instead of b1, . . . , b4 new spin variables

σj = (−1)bj (j = 1, . . . , 4), taking on the values ±1. The most general Z2-symmetric

Boltzmann weight is given by the following formula

W (σ1, σ2, σ3, σ4) = a0

(
1 +

∑
1≤i<j≤4

aij σiσj + a4 σ1σ2σ3σ4

)
. (1.1)

The coefficients a0, {aij}, a4, which correspond to BBS2 model, can be written as

a0 = (y + µt)(y′ + µ′)/(4yy′), (1.2)

a0a4 = (y − µt)(y′ − µ′)/(4yy′), (1.3)

a0a12 = (y − µt)(y′ + µ′)/(4yy′), (1.4)

a0a34 = (y + µt)(y′ − µ′)/(4yy′), (1.5)

a0a13 = (1 + xµ)(t + x′µ′)/(4yy′), (1.6)

a0a24 = (1− xµ)(t− x′µ′)/(4yy′), (1.7)

a0a14 = (1 + xµ)(t− x′µ′)/(4yy′), (1.8)

a0a23 = (1− xµ)(t + x′µ′)/(4yy′). (1.9)

It was pointed out in [11] that these coefficients satisfy a ‘free-fermion condition’

a4 = a12a34 − a13a24 + a14a23. (1.10)

Free-fermion models of statistical mechanics have been extensively studied in the

literature from different points of view [6, 8, 13, 14]. In particular, the partition function

of the model with plaquette weight (1.1), satisfying the condition (1.10), was calculated

by Bugrij [10] even in the case of a finite lattice. This result has allowed to obtain
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the eigenvalues of the BBS2 transfer matrix without solving any functional relations

[11]. Technically, the condition (1.10) means that the Boltzmann weight (1.1) can be

represented as the following integral over four auxiliary Grassmann variables ψ1, ψ̇2, ψ̇3,

ψ4:

W (σ1, σ2, σ3, σ4) =

∫
dψ1 dψ̇2 dψ̇3 dψ4 exp

{
a12σ1σ2ψ

1ψ̇2 − a13σ1σ3ψ
1ψ̇3+ (1.11)

+a14σ1σ4ψ
1ψ4 + a23σ2σ3ψ̇

2ψ̇3 − a24σ2σ4ψ̇
2ψ4 + a34σ3σ4ψ̇

3ψ4
}

eψ1

eψ̇2

eψ̇3

eψ4

.

Throughout this paper, we will use the convention that ‘dotted’ Grassmann variables

commute with the usual ones, and that the variables inside each set anticommute:

ψαψβ = −ψβψα, ψ̇αψ̇β = −ψ̇βψ̇α, ψαψ̇β = ψ̇βψα ∀ α, β.

The method of Grassmann variables was initially designed as a method of simple

calculation of the partition function of the 2D Ising model. It was discovered and

improved by different authors (see, for example, [9, 15, 20]). The use of two commuting

sets of Grassmann variables, which is crucial for our further discussion, was suggested

in [9].

The main drawback of the method of Grassmann integration is that it does not

give the eigenvectors of the transfer matrix, which are necessary ingredients in the

computation of correlation functions and form factors. Even in the case of the Ising

model, the only known practical way of calculation of these eigenvectors is the algebraic

method of Kaufman [18] (it should be mentioned, however, that recently a considerable

progress has been achieved [17] in the calculation of eigenvectors of the BBS transfer

matrix using Sklyanin’s method of separation of variables). It consists of two steps.

First one should remark that the transfer matrix induces a rotation in a certain Clifford

algebra. Then the eigenvectors are given by certain vectors from a Fock space, associated

to the basis of this algebra, in which the above rotation is diagonal. Although Kaufman’s

method was later extended to some other free-fermion models [21], it does not seem to

work neither for the general free-fermion model nor in the case of the BBS2 model‡.
The main complication, as compared to the Ising model case, is that one should guess

the explicit form of the appropriate rotation of the Clifford algebra.

Having spent some time trying to guess the answer for the rotation, the author

has finally found another method, which links Grassmann integral approach with the

transfer matrix formalism and allows to obtain the eigenvectors of the tranfer matrix of

the general free-fermion model (i. e. the model with plaquette weight (1.1), satisfying

the condition (1.10)). The present paper is devoted to the exposition of this method.

‡ Kaufman’s method has also some drawbacks. First, it does not give a convenient representation of
eigenvectors in terms of initial spin variables. Therefore, one is forced to do all the calculations in
purely algebraic setting. Second, in the Ising case the transfer matrix spectrum is highly degenerate, so
the eigenvectors are not determined uniquely. However, in the calculation of correlation functions and
form factors one is typically interested in a very precise basis of eigenstates; in addition to the transfer
matrix, they should also diagonalize the operator of discrete translations. Kaufman’s method does not
guarantee this last condition.
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This paper is organized as follows. In the next section, we find a convenient

representation of the row-to-row transfer matrix of the periodic BBS2 model (or, rather,

general free-fermion model) in terms of a Grassmann integral, involving two commuting

sets of variables (formulas (2.13), (2.15)). In Section 3, the eigenvectors of this transfer

matrix are calculated (basic ansatz is given by (3.3)). It should be pointed out that the

form of the answer depends on whether the number of sites in one row of the lattice is

even or odd. In Section 4, we find a dual basis of eigenvectors and normalize them. It

is also shown that one can express form factors of the model in terms of determinants

and inverses of certain Toeplitz matrices. Finally, in the last section the above results

are specialized to two particular cases (BBS2 model and Ising model) and are rewritten

in more common notation.

2. Grassmann integral representation

for the transfer matrix

Let us introduce the row-to-row transfer matrix of the BBS2 model. It is given by the

product of plaquette Boltzmann weights over one row (see Figure 1b),

T [σ, σ′] =
L∏

j=1

W (σj, σ
′
j, σ

′
j+1, σj+1), (2.1)

where periodic boundary conditions are imposed on spin variables:

σL+1 = σ1, σ′L+1 = σ′1.

This matrix naturally acts in the 2L-dimensional vector space V , composed of functions

of L spin variables σ1, . . . , σL. Namely, for any f [σ] ∈ V we define the left action

(Tf)[σ] =
∑

[σ′]

T [σ, σ′]f [σ′].

Partition function of the BBS2 model on L×M lattice, wrapped on the torus, may be

expressed in terms of the eigenvalues of T :

Z(L,M) = Tr TM =
∑

[σ(1)]

. . .
∑

[σ(M)]

T [σ(1), σ(2)] . . . T [σ(M), σ(1)].

In order to compute various correlation functions, one also needs to know matrix

elements of local field operators in the normalized basis of eigenstates of T . To obtain

these eigenstates in an explicit form, let us first find a convenient representation of the

transfer matrix.

From the formulas (1.11) and (2.1) it follows that one can write T in the form of a

Grassmann integral,

T [σ, σ′] = aL
0

∫
DψDψ̇ exp

{ L∑
j=1

(
a12σjσ

′
jψ

1
j ψ̇

2
j − a13σjσ

′
j+1ψ

1
j ψ̇

3
j+1 + a14σjσj+1ψ

1
j ψ

4
j+1+

+a23σ
′
jσ
′
j+1ψ̇

2
j ψ̇

3
j+1 − a24σ

′
jσj+1ψ̇

2
j ψ

4
j+1 + a34σ

′
j+1σj+1ψ̇

3
j+1ψ

4
j+1

)} L∏
j=1

eψ1
j eψ̇2

j eψ̇3
j+1 eψ4

j+1 ,
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where the measure is given by

DψDψ̇ =
L∏

j=1

(
dψ1

j dψ̇2
j dψ̇3

j+1 dψ4
j+1

)
.

Now let us make the change of integration variables

ψ1
j → σj ψ1

j , ψ̇2
j → σ′j ψ̇2

j , ψ̇3
j → σ′j ψ̇3

j , ψ4
j → σj ψ4

j

for all j = 1, . . . , L. This change does not affect the measure, since every σj and σ′j
appears in it twice. Spin variables disappear from the first (quadratic) exponential

under the integral, but emerge in the ‘tail’. Namely, one obtains

T [σ, σ′] = aL
0

∫
DψDψ̇ eS1[ψ,ψ̇]

[
eσ1ψ1

1

L∏
j=2

(
eσjψ4

j eσjψ1
j

)
eσ1ψ4

1

]
× (2.2)

×
[
eσ′1ψ̇2

1

L∏
j=2

(
eσ′j ψ̇3

j eσ′j ψ̇2
j

)
eσ′1ψ̇3

1

]
,

where S1[ψ, ψ̇] can be schematically represented as

S1[ψ, ψ̇] =
1

2

(
ψ ψ̇

)
D̂1

(
ψ

ψ̇

)
, (2.3)

with
(

ψ ψ̇
)

=
(

ψ1 ψ̇2 ψ̇3 ψ4
)

and

D̂1 =




0 a12 −a13∇x a14∇x

a12 0 a23∇x −a24∇x

−a13∇−x −a23∇−x 0 a34

−a14∇−x −a24∇−x a34 0


 . (2.4)

Here ∇x denotes the operator, shifting the lower indices of Grassmann variables by 1.

It obeys periodic boundary condition (∇x)
L = 1. For example, one has

ψ1∇x ψ̇ 3 =
L−1∑
j=1

ψ1
j ψ̇3

j+1 + ψ1
L ψ̇3

1 .

Note that in (2.2) we have rearranged the tail, assembling together the exponentials,

containing the same spin variables. It seems, however, that the exponentials eσ′1ψ̇3
1 and

eσ1ψ4
1 are not on their ‘right’ places. One may correct this, observing that for any

function F [ψ] and for any Grassmann variable ψα we have the identity

F [ψ] eψα = eψα
F [ψ] + F [−ψ]

2
+ e−ψα

F [ψ]− F [−ψ]

2
.

Now, introducing the notation

F1[ψ] = eσ1ψ1
1

L∏
j=2

(
eσjψ4

j eσjψ1
j

)
, F2[ψ̇] = eσ′1ψ̇2

1

L∏
j=2

(
eσ′j ψ̇3

j eσ′j ψ̇2
j

)
,
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one may rewrite the tail as

F1[ψ] eσ1ψ4
1F2[ψ̇] eσ′1ψ̇3

1 =
{

eσ1ψ4
1
F1[ψ] + F1[−ψ]

2
+ e−σ1ψ4

1
F1[ψ]− F1[−ψ]

2

}
× (2.5)

×
{

eσ′1ψ̇3
1
F2[ψ̇] + F2[−ψ̇]

2
+ e−σ′1ψ̇3

1
F2[ψ̇]− F2[−ψ̇]

2

}
.

Expanding this last expression, one obtains 16 terms. However, some of these terms

are equivalent, since the simultaneous change of the signs of all ψ and ψ̇ does not affect

the value of the integral. Then one may easily check that (2.5) may be replaced (after

appropriate change of variables) by the following combination, containing only 4 terms:

F1[ψ] eσ1ψ4
1F2[ψ̇] eσ′1ψ̇3

1 → 1

2

{
e−σ1ψ4

1F1[ψ] e−σ′1ψ̇3
1F2[ψ̇] + eσ1ψ4

1F1[−ψ] e−σ′1ψ̇3
1F2[ψ̇]+ (2.6)

+eσ1ψ4
1F1[ψ] eσ′1ψ̇3

1F2[ψ̇]− e−σ1ψ4
1F1[−ψ] eσ′1ψ̇3

1F2[ψ̇]
}

.

The third term of the last expression has the desired form and there is no need

to transform it further. If we make the substitution ψ̇3
1 → −ψ̇3

1, ψ4
1 → −ψ4

1 in the

integral, corresponding to the first term, it will have almost the same structure. The only

difference is that the boundary condition for the shift operator ∇x becomes antiperiodic:

(∇x)
L = −1.

Next one should remark that the second and the fourth term in (2.6) can be

obtained from the first and the third one, respectively, by changing the signs of the

spins σ1, . . . , σL. This change can be realized, using the operator of spin reflection U ,

whose defining property is that (Uf)[σ] = f [−σ] for any vector f [σ] ∈ V . Matrix

elements of U may be explicitly written as

U [σ, σ′] =
L∏

j=1

1− σj σ′j
2

.

Summarizing the above observations, we obtain the following representation for the

transfer matrix:

T =
1 + U

2
TNS +

1− U

2
TR, (2.7)

where

TNS(R)[σ, σ′] = aL
0

∫
DψDψ̇ exp

{
S

NS(R)
1 [ψ, ψ̇]

} L∏
j=1

(
eσjψ4

j eσjψ1
j

) L∏
j=1

(
eσ′j ψ̇3

j eσ′j ψ̇2
j

)
, (2.8)

and both actions S
NS(R)
1 [ψ, ψ̇] are defined by the formulas (2.3)–(2.4). Upper indices NS

and R correspond to antiperiodic (Neveu-Schwartz) and periodic (Ramond) boundary

conditions, satisfied by the shift operator ∇x.

The matrices P± = 1±U
2

have the properties of projectors, i. e. P 2
± = P±; thus

their eigenvalues are equal to either 0 or 1. The eigenvectors, corresponding to zero

eigenvalues of P+ (P−), are odd (even) under spin reflection. It means that a vector

f [σ] ∈ V will satisfy (P+f)[σ] = 0 ((P−f)[σ] = 0) iff f [σ] = −f [−σ] (respectively,

f [σ] = f [−σ]). Analogously, the eigenvectors of P+ (P−) with eigenvalue 1 are even

(odd) under spin reflection.
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The operator U commutes with the transfer matrix T . Therefore, these two matrices

can be diagonalized simultaneously and one may choose the eigenvectors of T so that

they are either even or odd under the action of U . Let us take an even eigenvector fe

of T , and denote by λfe the corresponding eigenvalue. Acting on fe by both sides of

the relation (2.7), and using the fact that U commutes with TNS and TR as well, one

obtains

λfefe = Tfe = (TNSP+ + TRP−)fe = TNSfe,

that is, any even eigenvector of T is an eigenvector of TNS with the same eigenvalue.

Similarly, any odd eigenvector of T is an eigenvector of TR. Conversely, any even

eigenvector of TNS and any odd eigenvector of TR are eigenvectors of T . Therefore, the

set of all transfer matrix eigenstates splits into two parts: NS-sector (even eigenvectors

of TNS) and R-sector (odd eigenvectors of TR). The problem of diagonalization of T

is then reduced to the calculation of eigenvectors and eigenvalues of matrices TNS and

TR, given by the formula (2.8).

Remark. Having diagonalized TNS and TR, one also gets for free the solution of the

BBS2 model with antiperiodic boundary conditions for spin variables (in one direction).

It is easy to understand that the transfer matrix of such model is given by

T a =
1− U

2
TNS +

1 + U

2
TR,

and, therefore, the set of its eigenstates is composed of odd eigenvectors of TNS and

even eigenvectors of TR.

The representation (2.8) can be simplified even further by integrating over fermionic

degrees of freedom, which are not coupled to spin variables. We mean the following:

elementary factors from the products of (2.8) can be written as

eσjψ4
j eσjψ1

j = e−ψ1
j ψ4

j eσj(ψ1
j +ψ4

j ), eσ′j ψ̇3
j eσ′j ψ̇2

j = e−ψ̇2
j ψ̇3

j eσ′j(ψ̇2
j +ψ̇3

j ).

Let us now introduce instead of ψ and ψ̇ new Grassmann variables

ϕj = ψ1
j + ψ4

j , ϕ̇j = ψ̇2
j + ψ̇3

j , ηj = ψ4
j , η̇j = ψ̇3

j , j = 1, . . . , L. (2.9)

Since the jacobian of the transformation (2.9) is equal to 1, the integration measure

transforms as

DψDψ̇ → DϕDϕ̇DηDη̇ =
L∏

j=1

(
dϕj dϕ̇j dηj dη̇j

)
.

Then the integral (2.8) may be rewritten as

TNS(R)[σ, σ′] = aL
0

∫
DϕDϕ̇DηDη̇ exp

{
S

NS(R)
2 [ϕ, ϕ̇, η, η̇]

} L∏
j=1

eσjϕj

L∏
j=1

eσ′j ϕ̇j , (2.10)

where the action S
NS(R)
2 [ϕ, ϕ̇, η, η̇] is given by

S
NS(R)
2 [ϕ, ϕ̇, η, η̇] =

1

2

(
ϕ ϕ̇ η̇ η

)
D̂2

(
ϕ ϕ̇ η̇ η

)T

,
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D̂2 =

=




0 a12 −a12 − a13∇x −1 + a14∇x

a12 0 −1 + a23∇x −a12 − a24∇x

−a12 − a13∇−x 1− a23∇−x −a23(∇x −∇−x) a12 + a34 + a13∇−x + a24∇x

1− a14∇−x −a12 − a24∇−x a12 + a34 + a13∇x + a24∇−x −a14(∇x −∇−x)


 .

Let us now integrate over η and η̇ in the representation (2.10). This integration can be

done relatively easily, since S
NS(R)
2 [ϕ, ϕ̇, η, η̇] is diagonalized by Fourier transformation.

Namely, if one denotes

(
ϕp ϕ̇p η̇p ηp

)
=

1√
L

L∑
j=1

e−ip j
(

ϕj ϕ̇j η̇j ηj

)
, (2.11)

then

S
NS(R)
2 [ϕ, ϕ̇, η, η̇] =

1

2

∑
p

NS(R) (
ϕ−p ϕ̇−p η̇−p η−p

)
D̂2(p)

(
ϕp ϕ̇p η̇p ηp

)T

, (2.12)

where the one-mode matrix D̂2(p) is given by

D̂2(p) =

=




0 a12 −a12 − a13 eip −1 + a14 eip

a12 0 −1 + a23 eip −a12 − a24 eip

−a12 − a13 e−ip 1− a23 e−ip −2i a23 sin p a12 + a34 + a13e
−ip + a24e

ip

1− a14 e−ip −a12 − a24 e−ip a12 + a34 + a13e
ip + a24e

−ip −2i a14 sin p




and the indices NS and R in the sum (2.12) mean that the corresponding quasimomenta

run over Neveu-Schwartz values (p = 2π
L

(
j + 1

2

)
, j = 0, 1, . . . , L−1) or, correspondingly,

Ramond values (p = 2π
L

j, j = 0, 1, . . . , L − 1). Note also that the integration measure

can be written as

DϕDϕ̇DηDη̇ =
∏

p

NS(R)(
dϕp dϕ̇p dηp dη̇p

)

Thus the 2L-fold integral over η and η̇ in the representation (2.10) factorizes into

a product of 4-fold (over η±p, η̇±p) and 2-fold integrals. Double integrals correspond

to the mode p = 0 (always present in the Ramond sector) and p = π (present in the

Ramond sector for even L and in the Neveu-Schwartz sector for odd L). After a little

bit cumbersome but nevertheless straightforward calculation one then obtains

TNS(R)[σ, σ′] = ζNS(R)

∫
DNS(R)ϕDNS(R)ϕ̇ exp

{
SNS(R)[ϕ, ϕ̇]

} L∏
j=1

eσjϕj

L∏
j=1

eσ′j ϕ̇j , (2.13)

where

DNS(R)ϕ =
∏

p

NS(R)
dϕp , DNS(R)ϕ̇ =

∏
p

NS(R)
dϕ̇p ,

ζNS(R) = aL
0

∏
p

NS(R)
χ1/2

p , (2.14)

χp = [a12 + a34 + (a13 + a24) cos p]2 +
[
(a13 − a24)

2 + 4a14a23

]
sin2 p,
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and the action SNS(R)[ϕ, ϕ̇] is given by

SNS(R)[ϕ, ϕ̇] =
1

2

∑
p

NS(R) (
ϕ−p ϕ̇−p

) (
G11(p) G12(p)

G21(p) G22(p)

)(
ϕp

ϕ̇p

)
, (2.15)

with

χp G11(p) = 2i sin p
[
a23 + a12a24 + a13a34 + a14a4 − 2(a14a23 − a13a24) cos p

]
,

χp G22(p) = 2i sin p
[
a14 + a12a13 + a34a24 + a23a4 − 2(a14a23 − a13a24) cos p

]
,

χp G12(p) = χp G21(−p) =
[
(a12 + a34)(a4 + 1)− (a14 + a23)(a13 + a24)

]
+

+
[
(a13 + a24)(a4 + 1)− (a14 + a23)(a12 + a34)

]
cos p +

+
[
(a24 − a13)(a4 − 1) + (a14 − a23)(a12 − a34)

]
i sin p .

As we will see in the next section, this final representation for TNS(R) (given by

the formulas (2.13), (2.15)) allows to obtain all transfer matrix eigenvectors almost

immediately. Concrete form of the functions Gij (i, j = 1, 2) does not play any essential

role.

For further convenience and making parallels with the work [11], let us also

introduce the notation vp = 4χp G12(p) and

up = 2χp

(
1−G11(p)G22(p) + G12(p)G21(p)

)
=

= 2
[
(1 + a4)

2 + (a12 + a34)
2 + (a13 + a24)

2 + (a14 + a23)
2
]

+

+ 4
[
(a12 + a34)(a13 + a24)− (a14 + a23)(1 + a4)

]
cos p .

Remark. It should be pointed out that we did not care about the correct overall sign

of TNS(R) in the representation (2.13). However, using the fact that for a12 = a13 =

a14 = a23 = a24 = a34 = 0 all the eigenvalues of T should be equal to 2LaL
0 , one can

restore this sign at any stage.

3. Transfer matrix eigenvectors

It appears that the form of the eigenvectors of TNS and TR depends on whether L is

even or odd. Moreover, quasiparticle interpretation of the eigenvectors and eigenvalues

is different in different regions of parameters of the BBS2 model. Below we will consider

various cases in order of increasing difficulty.

3.1. NS-sector, even L

If L is even, then the Neveu-Schwartz spectrum of quasimomenta does not contain the

values 0 and π (the only values with the property p = −p mod 2π).
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The simplest ansatz for an eigenvector f [σ] ∈ V of the matrix TNS is given by an

integral over L auxiliary Grassmann variables ξ1, . . . , ξL:

f [σ] =

∫
DNSξ exp

{∑
p

NS
2

ξ−p A(p) ξp

}
L∏

j=1

eσjξj . (3.1)

Here A(p) = −A(−p) is an unknown odd function to be determined, and {ξp} denote

Fourier components of ξ. The indices NS
2

and R
2

in sums and products will be used

to indicate that the corresponding operations involve only those Neveu-Schwartz and

Ramond quasimomenta, which lie in the open interval (0, π) (for the NS-sector and even

L, this is exactly one half of the Brillouin zone). Note that for even L the function (3.1)

is even with respect to the action of U : the reversal of all spins is equivalent to the

change of variables ξ → −ξ.

Let us now act on f [σ] by the matrix TNS. Since the fields ϕ̇ and ξ commute, the

sum
∑
[σ′]

TNS[σ, σ′]f [σ′] can be easily evaluated and one obtains

(TNSf)[σ] = 2L ζNS

∫
DNSϕDNSϕ̇ eSNS [ϕ,ϕ̇]

L∏
j=1

eσjϕj ×

×
∫
DNSξ exp

{∑
p

NS
2

ξ−p A(p) ξp +
L∑

j=1

ϕ̇j ξj

}
.

After integration over ξ one finds the exponential of a quadratic form in ϕ̇,
∫
DNSξ exp

{∑
p

NS
2

ξ−p A(p) ξp +
L∑

j=1

ϕ̇j ξj

}
=

=

∫
DNSξ exp

{∑
p

NS
2

(
ξ−p A(p) ξp + ϕ̇−p ξp + ϕ̇p ξ−p

)}
=

=

(∏
p

NS
2

A(p)

)
exp

{
−

∑
p

NS
2

ϕ̇−p A−1(p) ϕ̇p

}
,

which can then be pulled through the ‘linear’ exponentials. Then one may integrate

over ϕ̇ and obtain

(TNSf)[σ] = 2L ζNS
∏

p

NS
2

(
1− A(p) G22(p)

)∫
DNSϕ exp

{∑
p

NS
2
ϕ−pA

′(p)ϕp

}
L∏

j=1

eσjϕj ,

with

A′(p) = G11(p) +
A(p)G12(p)G21(p)

1− A(p)G22(p)
.

Therefore, the function (3.1) will be an eigenvector of TNS iff for all NS-values of p from

the interval (0, π) one has A(p) = A′(p). This equation is quadratic in A(p), and its

roots are given by

A±(p) =
1 + G(p)∓

√
(1−G(p))2 − 4G12(p)G21(p)

2 G22(p)
, (3.2)
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where we have introduced the notation

G(p) = G11(p)G22(p)−G12(p)G21(p) .

Thus the formula (3.1) gives 2L/2 eigenvectors of TNS, corresponding to different choices

of the set of one-mode roots.

One can take, for instance, A(p) = A+(p) for all p ∈ (0, π). The vector,

corresponding to this particular choice, will be denoted by |vac〉NS, since under some

conditions, satisfied by the parameters of the BBS2 model, it corresponds to the

eigenvalue with maximum modulus. Similarly, if we choose A(p) = A−(p) for some

values p1, . . . , pk ∈ (0, π), and A(p) = A+(p) for all the other NS-quasimomenta

from the interval (0, π), then the corresponding eigenvector will be denoted by

|p1,−p1; . . . pk,−pk〉NS. The origin of this notation will become clear soon.

In order to find all the eigenvectors of TNS, only a slight generalization of the ansatz

(3.1) is needed. Namely, let us define

fNS
{ip}[σ] =

∫
DNSξ

∏
p

NS
2

Fip(ξ−p, ξp)
L∏

j=1

eσjξj . (3.3)

Here each of the indices {ip} can take any of the four values, which we will conventionally

denote by 1, 2, 3, and 4. Corresponding functions Fi(ξ−p, ξp) are defined as follows:

F1(ξ−p, ξp) = exp
(
ξ−p A+(p) ξp

)
, (3.4)

F2(ξ−p, ξp) = ξ−p , (3.5)

F3(ξ−p, ξp) = ξp , (3.6)

F4(ξ−p, ξp) = exp
(
ξ−p A−(p) ξp

)
. (3.7)

Similarly to the above, one should act on fNS
{ip}[σ] by TNS, then to sum over the

intermediate spin variables, to integrate the result over ξ and, finally, over ϕ̇. Then

it is straightforward to verify that the formulas (3.3)–(3.7) indeed define an eigenvector

of TNS with the eigenvalue

ΛNS
{ip} = 2L ζNS

∏
p

NS
2

λip(p), (3.8)

where ‘one-mode’ eigenvalues are given by

λ1(p) = 1− A+(p)G22(p), (3.9)

λ2(p) = G12(p), (3.10)

λ3(p) = G21(p), (3.11)

λ4(p) = 1− A−(p)G22(p). (3.12)

One can also rewrite them in the following way (see the end of the previous section for

the notations):

λ1(p) =
up +

√
u2

p − vpv−p

4χp

, (3.13)
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λ2(p) =
vp

4χp

, λ3(p) =
v−p

4χp

, (3.14)

λ4(p) =
up −

√
u2

p − vpv−p

4χp

. (3.15)

The total number of found eigenstates is equal to 4L/2 = 2L, and thus the diagonalization

of the matrix TNS is completed.

Let us now turn to quasiparticle interpretation of eigenvalues and eigenvectors. It

follows from (2.14), (3.8), (3.13)–(3.15) that the eigenvalues can be written in the form

ΛNS
{ip} = ΛNS

max

∏

p|ip=2

NS
2 vp

ρp

∏

p|ip=3

NS
2 v−p

ρp

∏

p|ip=4

NS
2 vp v−p

ρ 2
p

, (3.16)

where

ΛNS
max = aL

0

∏
p

NS
ρ 1/2

p , ρp = up +
√

u2
p − vpv−p . (3.17)

Remark. The expression u2
p− vpv−p is a quadratic polynomial in cos p. For the sake of

simplicity, it will be assumed that the parameters {aij}1≤i<j≤4 are all real and chosen so

that this polynomial has no roots inside the interval (−1, 1) (for example, this condition

is satisfied, if one takes a12 = a34 and a13 = a24). It means, in particular, that u2
p−vpv−p

is non-negative and has local extrema only at the points p = 0 and p = π.

Consider also the operator of translations in discrete space R. Its action on an

arbitrary vector f [σ] ∈ V is defined as

(Rf)(σ1, σ2, . . . , σL) = f(σ2, σ3, . . . , σ1). (3.18)

This operator commutes with the transfer matrix T , with the matrices TNS and TR,

and also with the operator U of spin reflection. Since we have already diagonalized TNS

and obtained nondegenerate spectrum, the eigenvectors (3.3) should diagonalize R as

well. Actually, it is not difficult to verify that

(RfNS
{ip})[σ] =

∏

p|ip=2

NS
2

eip
∏

p|ip=3

NS
2

e−ip fNS
{ip}[σ].

Now it is clear that the eigenvectors of TNS can be labelled by the collections of

distinct NS-quasimomenta and interpreted as multiparticle states. One-particle energy

is given by

ε(p) = − ln
vp

ρp

.

It may have a non-zero imaginary part, which is a general consequence of the fact that

the transfer matrix T of the BBS2 model is not symmetric. The eigenstate, which

contains particles with the momenta p1, . . . , pk, will be denoted by |p1, . . . , pk〉NS. In

order to determine, which one of the functions (3.3) gives the explicit form of this vector,

one should decompose the set of momenta of particles from the state |p1, . . . , pk〉NS into

three parts: pairs of the form ±pj, ‘unpaired’ momenta from the interval (0, π), and

‘unpaired’ momenta from the interval (π, 2π). Then in the ansatz (3.3) one should set
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• ip = 4, if ±p appears in the first part,

• ip = 2, if p appears in the second part,

• ip = 3, if −p appears in the third part,

• ip = 1 for all the other values of p.

This procedure establishes the correspondence between the formulas (3.3) and usual

quasiparticle notation.

Remark. Recall that only even eigenvectors of TNS diagonalize the full transfer matrix

T as well. It means that the total number of appearances of ip = 2 and ip = 3 in the

functions (3.3) should be even. In other words, NS-eigenstates of T should contain even

number of particles.

3.2. NS-sector, odd L

When L is odd, the Neveu-Schwartz spectrum of quasimomenta contains the value

p = π. To take into account this special mode, it is sufficient to slightly modify the

ansatz (3.3). Let us consider

fNS
{ip}[σ] =

∫
DNSξ F̃iπ(ξπ)

∏
p

NS
2

Fip(ξ−p, ξp)
L∏

j=1

eσjξj , (3.19)

where all the indices {ip}, except iπ, take on four values as above, and the functions

F1 . . . F4 are given by (3.4)–(3.7). The index iπ can have only two values, 1 and 2, and

the corresponding functions F̃1 and F̃2 are simply

F̃1(ξ) = 1, F̃2(ξ) = ξ.

One may verify that the function (3.19) gives an eigenvector of TNS with the eigenvalue

ΛNS
{ip} = 2L ζNS λ̃iπ(π)

∏
p

NS
2

λip(p),

where all λi(p) are defined as above and

λ̃1(π) = 1, λ̃2(π) = G12(π) =
vπ

4χπ

.

Since the total number of eigenvectors (3.19) is equal to 2 × 4(L−1)/2 = 2L, the

diagonalization of TNS is completed.

The first thing that may seem unusual is that if we set ip = 1 for all p, including

p = π, the corresponding eigenvector of TNS will not always represent the physical

vacuum. Moreover, this vector is odd under spin reflection and, therefore, it is not an

eigenvector of the full transfer matrix T . Note also that

ρ1/2
π = 2χ1/2

π max

{ |vπ|
4χπ

, 1

}
.
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Therefore, if one tries to write the eigenvalues in the form, analogous to (3.16), then the

result will be different in different regions of parameters. Namely, for |vπ|/4χπ ≥ 1 one

obtains

ΛNS
{ip} = ΛNS

max

(
vπ

ρπ

)2−iπ ∏

p|ip=2

NS
2 vp

ρp

∏

p|ip=3

NS
2 v−p

ρp

∏

p|ip=4

NS
2 vp v−p

ρ 2
p

,

and for |vπ|/4χπ ≤ 1 we have

ΛNS
{ip} = ΛNS

max

(
vπ

ρπ

)iπ−1 ∏

p|ip=2

NS
2 vp

ρp

∏

p|ip=3

NS
2 v−p

ρp

∏

p|ip=4

NS
2 vp v−p

ρ 2
p

,

where ΛNS
max is defined by the formula (3.17). Thus one can again interpret the

eigenvectors of TNS as multiparticle states |p1, . . . , pk〉NS. The main differences with

the previous case are the following:

• If |vπ|/4χπ ≥ 1, then the states, containing a particle with the momentum p = π,

are given by the ansatz (3.19) with iπ = 1; for |vπ|/4χπ ≤ 1 they correspond to the

choice iπ = 2.

• For |vπ|/4χπ ≥ 1 the eigenstates, which are even (odd) under spin reflection, contain

even (odd) number of particles, while for |vπ|/4χπ ≤ 1 this number should be odd

(even).

3.3. R-sector, odd L

The treatment of this case is completely analogous to the previous one, since for odd

L Ramond spectrum contains only one ‘special’ mode p = 0. All the eigenvectors and

eigenvalues of the matrix TR are given by

f R
{ip}[σ] =

∫
DRξ F̃i0(ξ0)

∏
p

R
2
Fip(ξ−p, ξp)

L∏
j=1

eσjξj , (3.20)

ΛR
{ip} = 2L ζR λ̃i0(0)

∏
p

R
2
λip(p).

Here the indices {ip}p6=0 take on four values, i0 = 1, 2, the functions {F̃j}, {Fj}, {λj}
are defined as above and

λ̃1(0) = 1, λ̃2(0) = G12(0) =
v0

4χ0

.

Again, since we have

ρ
1/2
0 = 2χ

1/2
0 max

{ |v0|
4χ0

, 1

}
,

the quasiparticle interpretation of eigenvalues and eigenvectors is different in the regions

|v0|/4χ0 ≥ 1 and |v0|/4χ0 ≤ 1. Namely, one has

ΛR
{ip} = ΛR

max

(
v0

ρ0

)2−i0 ∏

p|ip=2

R
2 vp

ρp

∏

p|ip=3

R
2 v−p

ρp

∏

p|ip=4

R
2 vp v−p

ρ 2
p

for |v0|/4χ0 ≥ 1,
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ΛR
{ip} = ΛR

max

(
v0

ρ0

)i0−1 ∏

p|ip=2

R
2 vp

ρp

∏

p|ip=3

R
2 v−p

ρp

∏

p|ip=4

R
2 vp v−p

ρ 2
p

for |v0|/4χ0 ≤ 1,

where the eigenvalue with the maximum modulus, ΛR
max, is given by

ΛR
max =

∏
p

R
ρ1/2

p .

Similarly to the above, let us denote by |p1, . . . , pk〉R the eigenstate of TR, containing k

particles with distinct R-momenta p1, . . . , pk.

Note that even (odd) eigenstates of TR should contain even (odd) number of

particles for |v0|/4χ0 ≥ 1, and odd (even) number of particles for |v0|/4χ0 ≤ 1.

This change can be easily understood if we take, say, |v0|/4χ0 ≤ 1, and consider

two eigenstates, |p1, . . . , pk〉R and |0, p1, . . . , pk〉R (pj 6= 0, j = 1, . . . , k). Then let us

gradually increase |v0|/4χ0. When this parameter approaches the critical value 1, two

eigenstates correspond to the same eigenvalue, and when it exceeds 1, the roles of two

vectors swap around: the particle with zero momentum disappears from the second

vector (thus decreasing the number of particles by 1) and appears in the first (the

number of particles increases by 1).

3.4. R-sector, even L

Since for even L the Ramond spectrum of quasimomenta contains both p = 0 and p = π,

the eigenvectors and eigenvalues of TR in this case can be written in the following way:

f R
{ip}[σ] =

∫
DRξ F̃i0(ξ0)F̃iπ(ξπ)

∏
p

R
2
Fip(ξ−p, ξp)

L∏
j=1

eσjξj , (3.21)

ΛR
{ip} = 2L ζR λ̃i0(0)λ̃iπ(π)

∏
p

R
2
λip(p) .

From the physical point of view, here one should distinguish four different regions in

the space of parameters. They have the following properties:

• |v0| ≥ 4χ0, |vπ| ≥ 4χπ. The eigenstates of TR, containing a particle with the

momentum p = 0 (p = π), are given by the formula (3.21) with i0 = 1 (iπ = 1).

The eigenvectors, which are even (odd) under spin reflection, should contain even

(odd) number of particles.

• |v0| ≥ 4χ0, |vπ| ≤ 4χπ. The eigenstates, containing a particle with the momentum

p = 0 (p = π), correspond to i0 = 1 (iπ = 2). Even (odd) eigenvectors contain odd

(even) number of particles.

• |v0| ≤ 4χ0, |vπ| ≥ 4χπ. Particle with the momentum p = 0 (p = π) corresponds to

i0 = 2 (iπ = 1). Even (odd) eigenvectors contain odd (even) number of particles.

• |v0| ≤ 4χ0, |vπ| ≤ 4χπ. Particle with the momentum p = 0 (p = π) corresponds to

i0 = 2 (iπ = 2). Even (odd) eigenvectors contain even (odd) number of particles.
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4. Norms and form factors

In the present section, the problem of computation of correlation functions of the BBS2

model is addressed. Local fields will be represented by spin variables σi,j (i = 1, . . . , L;

j = 1, . . . , M). In the transfer matrix formalism, 2k-point correlation functions

〈σi1,j1σi2,j2 . . . σi2k,j2k
〉 can be written in the following way§:

〈σi1,j1 . . . σi2k,j2k
〉 = Z−1(L,M)× (4.1)

×
∑

[σ(1)]

. . .
∑

[σ(2k)]

σ
(1)
i1

T j2−j1 [σ(1), σ(2)] σ
(2)
i2

T j2−j1 [σ(2), σ(3)] . . . σ
(2k)
i2k

TM−(j2k−j1)[σ(2k), σ(1)] ,

where it was assumed that j1 ≤ j2 ≤ . . . j2k. Let us introduce spin operator

S1,1[σ, σ′] = σ1 δ[σ], [σ′] = σ1

L∏
j=1

1 + σj σ′j
2

,

acting on functions f [σ] ∈ V from the left in the usual way. If we make use of the

translation operator R (see formula (3.18)) to define

Si,j = T j−1 Ri−1 S1,1 R1−i T 1−j, i = 1, . . . , L, j = 1, . . . , M,

then one may rewrite (4.1) as

〈σi1,j1 . . . σi2k,j2k
〉 =

Tr
(
Si1,j1Si2,j2 . . . Si2k,j2k

TM
)

Tr TM
. (4.2)

Since all the eigenvalues of the transfer matrix T are known, the problem reduces to the

calculation of the trace in the numerator. One would want to compute this trace in the

basis of eigenstates of T . However, such computation is not quite straightforward, since

the transfer matrix of the BBS2 model is not symmetric and thus its eigenvectors are

not necessarily orthogonal. Therefore, in order to construct the dual basis, one should

separately find the eigenvectors for the right action of T , (since T is not symmetric,

they can not be obtained from the eigenvectors, found in the previous section, by simple

transposition).

Assume for a moment that we have found all ‘left’ and ‘right’ eigenvectors of

T . Let us denote them by |n〉 and 〈n| , where n is any convenient set of quantum

numbers, identifying the eigenstate (for example, the number of particles and their

quasimomenta). The resolution of the identity matrix in this basis of eigenstates has

the form

1 =
∑

n

bn |n〉〈n|, bn = 1/〈n|n〉. (4.3)

The relation (4.3) means, in particular, that the trace of any matrix X can be written

as

Tr X =
∑

n

bn〈n|X|n〉 .

§ All (2k + 1)-point correlation functions vanish due to Z2-symmetry of the model.
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Recall also that the eigenvectors of T diagonalize as well the translation operator

R. Therefore, inserting the resolution of the identity matrix into the representation

(4.2) k times, one can rewrite 2k-point correlation function in the form of the so-called

form factor expansion. For example, for the 2-point correlation function one has

〈σi1,j1σi2,j2〉 =

∑
m,n

bmbn〈n|S1,1|m〉〈m|S1,1|n〉 e−Em(j2−j1)−En(M−j2+j1)+i(Pm−Pn)(i2−i1)

∑
n

e−MEn
. (4.4)

Matrix elements 〈n|S1,1|m〉, entering this formula, hereinafter will be referred to as form

factors. Parameters En and Pn have the meaning of energy and total momentum of the

state |n〉 (and 〈n|). They are related to the eigenvalues of T and R in the following way:

T |n〉 = Λmax e−En|n〉, R|n〉 = eiPn |n〉,
where Λmax denotes the eigenvalue of T with the maximum modulus. In the BBS2 model,

the values of En and Pn, corresponding to the multiparticle state |n〉 = |p1, . . . , pk〉, are

given by the sums of one-particle energies and momenta.

The generalization of the form factor expansion (4.4) to the multipoint case is

straightforward. Thus in order to find all correlation functions, only three further steps

should be made. First one should find the eigenvectors for the right action of the transfer

matrix T , i. e. the functions f [σ] ∈ V such that
∑
[σ]

f [σ]T [σ, σ′] = λff [σ′]. Then one

needs to compute scalar products 〈n|n〉. Finally, the most difficult task is the calculation

of form factors 〈n|S1,1|m〉. All these problems are treated (the third one with only a

partial success) in the following subsections.

4.1. Eigenvectors for the right action of T

The variables [σ] and [σ′] enter into the representation (2.13) for the matrices TNS and

TR in a similar way. Therefore, one may construct the eigenvectors for the right action

of T along the lines of Section 3. However, there exists even more straightforward way to

obtain them. Note that the right action of T on f [σ] ∈ V coincides with the left action

of the transfer matrix Ṫ = T T of another BBS2 model (see Figure 1b), characterized by

the parameters

ȧ12 = a12, ȧ13 = a24, ȧ14 = a23, (4.5)

ȧ23 = a14, ȧ24 = a23, ȧ34 = a34. (4.6)

Thus the eigenvectors we are looking for may be obtained from already found ones by

the substitution (4.5)–(4.6) and mathching the eigenvalues.

It is easy to verify that under the above substitution various quantities, used in the

construction of eigenvectors and eigenvalues, change as follows:(
G11(p) G12(p)

G21(p) G22(p)

)
→

(
Ġ11(p) Ġ12(p)

Ġ21(p) Ġ22(p)

)
=

(
G22(p) G21(p)

G12(p) G11(p)

)
,
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A±(p) → Ȧ±(p) =
1 + G(p)∓

√
(1−G(p))2 − 4G12(p)G21(p)

2 G11(p)
, (4.7)

χp → χ̇p = χp , up → u̇p = up , vp → v̇p = v−p .

Let us now consider, for instance, NS-sector and assume that L is even. Let fNS
{ip}[σ]

denote the ‘left’ eigenvector (3.3), corresponding to the eigenvalue ΛNS
{ip}. Under the

substitution (4.5)–(4.6) ‘partial’ eigenvalues λ2(p) and λ3(p) (formulas (3.10), (3.11))

exchange their roles, while λ1(p) and λ4(p) remain unchanged. Then it becomes clear

that the ‘right’ eigenvector ḟNS
{ip}[σ] of TNS, corresponding to the same eigenvalue as

fNS
{ip}[σ], is given by

ḟNS
{ip}[σ] =

∫
DNS ξ̇

∏
p

NS
2

Ḟip(ξ̇−p, ξ̇p)
L∏

j=1

eσj ξ̇j , (4.8)

with

Ḟ1(ξ̇−p, ξ̇p) = exp
(
ξ̇−p Ȧ+(p) ξ̇p

)
, (4.9)

Ḟ2(ξ̇−p, ξ̇p) = ξ̇p , (4.10)

Ḟ3(ξ̇−p, ξ̇p) = ξ̇−p , (4.11)

Ḟ4(ξ̇−p, ξ̇p) = exp
(
ξ̇−p Ȧ−(p) ξ̇p

)
, (4.12)

the functions Ȧ±(p) being defined by the formula (4.7). Dotted Grassmann variables ξ̇

are used in the representation (4.8) for further convenience in the computation of scalar

products and form factors.

In order to obtain a similar answer for the other cases (Neveu-Schwartz sector

for odd L and Ramond sector), it is sufficient to substitute in (3.19), (3.20) and

(3.21) instead of F1 . . . F4 new functions Ḟ1 . . . Ḟ4. The functions F̃1 and F̃2, which

are responsible for the special modes p = 0, π, remain unchanged.

4.2. Normalization

It is instructive to consider not only the norms 〈n|n〉, but also general scalar products

〈m|n〉, and to verify by hand that 〈m|n〉 = 0 for m 6= n. First one should remark that the

eigenvectors of T , which belong to different sectors, are orthogonal, since they correspond

to different eigenvalues of U . Thus one may look at each sector separately. Let us now

consider, for instance, the Neveu-Schwartz sector for even L. Let us take a ‘right’

eigenvector NS〈{ip}| def
= ḟNS

{ip}[σ] (given by the formula (4.8)) and a ‘left’ eigenvector

|{jp}〉NS

def
= fNS

{jp}[σ] (given by the formula (3.3)), and then compute their scalar product

NS〈{ip}|{jp}〉NS =
∑

[σ]

ḟNS
{ip}[σ] fNS

{jp}[σ].
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Since the fields ξ and ξ̇ in the representations (3.3) and (4.8) commute, the summation

over intermediate spins can be easily done and one obtains

NS〈{ip}|{jp}〉NS = 2L

∫
DNSξDNS ξ̇

∏
p

NS
2

(
Ḟip(ξ̇−p, ξ̇p) Fjp(ξ−p, ξp) e ξ̇−p ξp + ξ−p ξ̇p

)
.

Calculation of this factorized integral gives

NS〈{ip}|{jp}〉NS = 2L
∏

p

NS
2

αipjp(p),

where the functions αij(p) can be assembled into a 4× 4 matrix

‖αij(p)‖i,j=1,...,4 =




Ȧ+(p)A+(p)− 1 0 0 Ȧ+(p)A−(p)− 1

0 −1 0 0

0 0 −1 0

Ȧ−(p)A+(p)− 1 0 0 Ȧ−(p)A−(p)− 1


 .

Using the explicit formulas for Ȧ±(p) and A±(p), one may check that Ȧ±(p)A∓(p) = 1.

Therefore, ‘right’ and ‘left’ eigenvectors, corresponding to different eigenvalues, are

orthogonal (as it should be). The norm NS〈{ip}|{ip}〉NS is given by

NS〈{ip}|{ip}〉NS = 2L
∏

p

NS
2

αip(p), (4.13)

where we have introduced the notation

α1(p) = 1− Ȧ+(p)A+(p),

α2(p) = α3(p) = 1,

α4(p) = 1− Ȧ−(p)A−(p),

and corrected the overall sign. One may check that the answer for the Neveu-Schwartz

sector and odd L is given by the same formula (4.13). The only things that change in

the Ramond sector are the values of quasimomenta.

4.3. Form factors

Since the eigenstates of T from the same sector are all simultaneously even or odd under

spin reflection, all form factors of type NS–NS and R–R are equal to zero. Now assume

for definiteness that L is even and consider a ‘right’ eigenvector NS〈{ip}| = ḟNS
{ip}[σ] from

the Neveu-Schwartz sector and a ‘left’ eigenvector |{jp}〉R = fR
{jp}[σ] from the Ramond

sector. Let us calculate the form factor

NS〈{ip}|S1,1|{jp}〉R =
∑

[σ]

σ1 ḟNS
{ip}[σ] fR

{jp}[σ] .

After summation over intermediate spins one obtains

NS〈{ip}|S1,1|{jp}〉R = 2L

∫
DRξDNS ξ̇ F̃j0(ξ0)F̃jπ(ξπ)

∏
p

R
2
Fjp(ξ−p, ξp) ×

×
∏

q

NS
2

Ḟiq(ξ̇−q, ξ̇q)(ξ1 + ξ̇1) exp

{
L∑

k=1

ξk ξ̇k

}
. (4.14)
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Unfortunately, we have not managed to find a compact expression for this

gaussian integral, although we strongly suspect it is possible. In order to illustrate

emerging difficulties, let us assume that |v0| < 4χ0, |vπ| > 4χπ (this region mimics

ferromagnetic phase), and consider the simplest possible form factor NS〈vac|S1,1|vac〉R,

which corresponds to the following choice: j0 = 1, jπ = 2, jp = 1 for all p ∈ (0, π),

iq = 1 for all q ∈ (0, π). One then obtains

NS〈vac|S1,1|vac〉R = 2L

∫
DRξDNS ξ̇ ξπ (ξ1 + ξ̇1)×

× exp

{∑
p

R
2
ξ−p A+(p)ξp +

∑
q

NS
2

ξ̇−q Ȧ+(q)ξ̇q +
L∑

k=1

ξk ξ̇k

}
.

Quadratic form in the exponential consists of three pieces, which can not be diagonalized

simultaneously: the first and the second piece are diagonal in the Fourier basis with

Ramond and Neveu-Schwartz values of discrete quasimomenta, and the third one is

diagonal in the coordinate representation. Actually, one can now remove the dots, using

the following rule: all quadratic terms in the exponential, containing a dotted variable

on the left, should change their signs. Performing this operation and passing to the

coordinate representation in all terms, one obtains

NS〈vac|S1,1|vac〉R = (4.15)

=
2L

√
L

∫
DξDη

L∑

k=1

(−1)kξk (ξ1 + η1) exp

{
1

2

(
ξ η

) (
A+ 1

−1 −Ȧ+

)(
ξ

η

)}
,

where antisymmetric L× L matrices A+, Ȧ+ are given by

A+
xx′ =

1

L

∑

p 6=0,π

R
A+(p) eip(x−x′), Ȧ+

xx′ =
1

L

∑
q

NS
Ȧ+(q) eiq(x−x′), x, x′ = 1, . . . , L.

Evaluation of the gaussian integral (4.15) gives

NS〈vac|S1,1|vac〉R =
2L

√
L

Pf(Ȧ+) Pf(H)
L∑

k=1

(−1)k

[
H−1 −

(
Ȧ+

)−1

H−1

]

1k

, (4.16)

where L× L matrix H is also antisymmetric and has Toeplitz form:

Hxx′ =
(
Ȧ+

)−1

xx′
− A+

xx′ =

=
1

L

∑
q

NS
A−(q) eiq(x−x′) − 1

L

∑

p6=0,π

R
A+(p) eip(x−x′).

Thus the problem of computation of the form factor NS〈vac|S1,1|vac〉R is reduced to

the calculation of the determinant of H and inverse matrix H−1. Actually, this is also

the case for more complicated form factors. In spite of the remarkably simple form of

the matrix H, we have not succeded in the calculation of Pf(H) and H−1. However,

we believe that the representations of type (4.16) are still useful, since they effectively

reduce initial 2L-dimensional problem to an L-dimensional one.
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It should also be pointed out that form factor NS〈vac|S1,1|vac〉R enters into the

definition of the order parameter of the BBS2 model. More precisely, one has

〈σ〉2 def
= lim

i,j→∞

(
lim

L,M→∞
〈σ1,1σi,j〉

)
= lim

L→∞
NS〈vac|S1,1|vac〉R R〈vac|S1,1|vac〉NS

NS〈vac|vac〉NS R〈vac|vac〉R .

Although we have not managed to obtain a closed expression for this form factor, the

order parameter can presumably be calculated by another method. We hope to return

to this problem elsewhere.

5. Special cases

5.1. BBS2 model

Parameters of the general free-fermion model, which correspond to BBS2 model (via the

formulas (1.2)–(1.9)), are not independent. In particular, in addition to free-fermion

condition (1.10), they also satisfy the relation a13a24 = a14a23. Therefore, one could

expect some simplifications of the above formulas for tranfer matrix eigenvectors to occur

in this case. Furthermore, it is known that the eigenvalues of the BBS2 transfer matrix

should have polynomial dependence on spectral variable t, and that the eigenvectors

should not depend on it. In order to verify these properties, let us rewrite our formulas

in the BBS notation.

The variables χp and Gij(p) (i, j = 1, 2), which were used in the Grassmann integral

representation of the transfer matrix, are expressed in terms of t, x, x′, y, y′, µ, µ′ as

χp =
4(t + µµ′xx′)2 + 4(yy′ − tµµ′)2 + 8(t + µµ′xx′)(yy′ − tµµ′) cos p

(y + µt)(y′ + µ′)
,

χp G11(p) =
8it(y + µµ′x′)(y′ − µµ′x) sin p

(y + µt)2(y′ + µ′)2

χp G22(p) =
8it(y − µµ′x′)(y′ + µµ′x) sin p

(y + µt)2(y′ + µ′)2
,

χp G12(p) = 16(y + µt)−2(y′ + µ′)−2×
× [

t2 − y2y′2 + µ2µ′2(t2 − x2x′2)− 2µµ′(t2 + xx′yy′) cos p− 2itµµ′(xy + x′y′) sin p
]
.

In order to write down the eigenvalues of TNS and TR, it is sufficient to express in terms

of BBS parameters the quantities Λ
NS(R)
max and vp/ρp . They are given by (see also [11])

ΛNS
max =

(1 + µLµ′L)

yLy′L
∏

p

NS
(t + tp),

ΛR
max =

(1− µLµ′L)

yLy′L
∏

p

R
(t + tp),

vp/ρp =
t− tp
t + tp

,
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where tp is defined as

tp =

√
apcp − b2

p − ibp

ap

,

with

ap = 1− 2µµ′ cos p + µ2µ′2,

bp = µµ′(xy + x′y′) sin p.

cp = y2y′2 + 2µµ′xx′yy′ cos p + µ2µ′2x2x′2.

Finally, ‘right’ and ‘left’ eigenvectors of TNS and TR are fully characterized by the

functions A±(p) and Ȧ±(p), which in the case of the BBS2 model can be written in the

following form:

A±(p) =
dp ∓

√
apcp − b2

p

(y − µµ′x′)(y′ + µµ′x) i sin p
,

Ȧ±(p) =
dp ∓

√
apcp − b2

p

(y + µµ′x′)(y′ − µµ′x) i sin p
,

where

dp = µµ′(xx′ − yy′) + (yy′ − µ2µ′2xx′) cos p.

One should note that the functions A+(p), Ȧ+(p) do not depend on t, as expected.

5.2. Ising model

In the Ising case, another parametrization is typically used. For simplicity, let us

consider the isotropic model, characterized by the plaquette weight

W (σ1, σ2, σ3, σ4) = exp
{1

2
K(σ1σ2 + σ2σ3 + σ3σ4 + σ4σ1)

}
.

Parameters of the general free-fermion model, corresponding to this Boltzmann weight,

are given by

a0 =
cosh2 K + 1

2
, a4 = a13 = a24 =

sinh2 K

cosh2 K + 1
,

a12 = a23 = a34 = a14 =
sinh K cosh K

cosh2 K + 1
.

Let us also introduce the function γq, given by the positive root of the equation

cosh γq = sinh 2K + sinh−1 2K − cos q,

One can now rewrite the variables χp and Gij(p) (i, j = 1, 2) from the Grassmann

integral representation of TNS and TR in the following way:

χp =
sinh2 2K [(1 + tanh K cos p)2 + sin2 p]

(cosh2 K + 1)2
,
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χp G11(p) = χp G22(p) =
2i sin p sinh 2K (cosh 2K − tanh K cos p)

(cosh2 K + 1)2
,

χp G12(p) =
2 sinh 2K

(cosh2 K + 1)2
.

The eigenvalues and eigenvectors of TNS and TR may be found from

ΛNS(R)
max = (2 sinh 2K)L/2 exp

{
1

2

∑
p

NS(R)
γp

}
, vp/ρp = e−γp ,

A±(p) = Ȧ±(p) =
sinh K cosh K[(1 + tanh K cos p)2 + sin2 p]− e±γp

i sin p (cosh 2K − tanh K cos p)
.

It should be emphasized once again that the transfer matrix eigenvectors, constructed

above, automatically diagonalize the translation operator R as well. Therefore, we

believe that these eigenvectors may turn out to be useful for the construction of a

rigorous proof of the recently obtained formula [12] for Ising spin form factors on a

finite lattice.

6. Summary

We have obtained the transfer matrix eigenvectors of the BBS2 model on a finite

lattice, using the method of Grassmann integration. Our results are exact and explicit,

i. e. the eigenvectors are expressed in terms of initial lattice variables. Grassmann

integral representation for the eigenvectors immediately gives their norms and allows to

considerably advance in the computation of form factors of the BBS2 model.

The only two things that were actually necessary for our computation are the

translational invariance of the model and the representation (1.11) for the plaquette

Boltzmann weight. In this respect, the method, developed in the present paper, is

quite general and it could be extended to free-fermion models with a more complicated

configuration space of order parameter, once these are found.
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