24 research outputs found
An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis
Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is
a major cause of cancer-associated mortality. Secondary bone cancer (SBC) is a
complex disease caused by metastasis of tumor cells from their primary site and
is characterized by intricate interplay of molecular interactions.
Identification of targets for multifactorial diseases such as SBC, the most
frequent complication of breast and prostate cancers, is a challenge. Towards
achieving our aim of identification of targets specific to SBC, we constructed
a 'Cancer Genes Network', a representative protein interactome of cancer genes.
Using graph theoretical methods, we obtained a set of key genes that are
relevant for generic mechanisms of cancers and have a role in biological
essentiality. We also compiled a curated dataset of 391 SBC genes from
published literature which serves as a basis of ontological correlates of
secondary bone cancer. Building on these results, we implement a strategy based
on generic cancer genes, SBC genes and gene ontology enrichment method, to
obtain a set of targets that are specific to bone metastasis. Through this
study, we present an approach for probing one of the major complications in
cancers, namely, metastasis. The results on genes that play generic roles in
cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have
broader implications in understanding the role of molecular regulators in
mechanisms of cancers. Specifically, our study provides a set of potential
targets that are of ontological and regulatory relevance to secondary bone
cancer.Comment: 54 pages (19 pages main text; 11 Figures; 26 pages of supplementary
information). Revised after critical reviews. Accepted for Publication in
PLoS ON
The Src inhibitor dasatinib accelerates the differentiation of human bone marrow-derived mesenchymal stromal cells into osteoblasts
The proto-oncogene Src is an important non-receptor protein tyrosine kinase involved in signaling pathways that control cell adhesion, growth, migration and differentiation. It negatively regulates osteoblast activity, and, as such, its inhibition is a potential means to prevent bone loss. Dasatinib is a new dual Src/Bcr-Abl tyrosine kinase inhibitor initially developed for the treatment of chronic myeloid leukemia. It has also shown promising results in preclinical studies in various solid tumors. However, its effects on the differentiation of human osteoblasts have never been examined.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
The Effects of Aging on the Molecular and Cellular Composition of the Prostate Microenvironment
Advancing age is associated with substantial increases in the incidence rates of common diseases affecting the prostate gland including benign prostatic hyperplasia (BPH) and prostate carcinoma. The prostate is comprised of a functional secretory epithelium, a basal epithelium, and a supporting stroma comprised of structural elements, and a spectrum of cell types that includes smooth muscle cells, fibroblasts, and inflammatory cells. As reciprocal interactions between epithelium and stromal constituents are essential for normal organogenesis and serve to maintain normal functions, discordance within the stroma could permit or promote disease processes. In this study we sought to identify aging-associated alterations in the mouse prostate microenvironment that could influence pathology.We quantitated transcript levels in microdissected glandular-adjacent stroma from young (age 4 months) and old (age 20-24 months) C57BL/6 mice, and identified a significant change in the expression of 1259 genes (p<0.05). These included increases in transcripts encoding proteins associated with inflammation (e.g., Ccl8, Ccl12), genotoxic/oxidative stress (e.g., Apod, Serpinb5) and other paracrine-acting effects (e.g., Cyr61). The expression of several collagen genes (e.g., Col1a1 and Col3a1) exhibited age-associated declines. By histology, immunofluorescence, and electron microscopy we determined that the collagen matrix is abundant and disorganized, smooth muscle cell orientation is disordered, and inflammatory infiltrates are significantly increased, and are comprised of macrophages, T cells and, to a lesser extent, B cells.These findings demonstrate that during normal aging the prostate stroma exhibits phenotypic and molecular characteristics plausibly contributing to the striking age associated pathologies affecting the prostate