13 research outputs found

    Histone deacetylase inhibitors suppress rheumatoid arthritis fibroblast-like synoviocyte and macrophage IL-6 production by accelerating mRNA decay

    Get PDF
    Background Histone deacetylase inhibitors (HDACi) display potent therapeutic efficacy in animal models of arthritis and suppress inflammatory cytokine production in rheumatoid arthritis (RA) synovial macrophages and tissue. Objectives To determine the molecular mechanisms contributing to the suppressive effects of HDACi on RA synovial cell activation, using interleukin 6 (IL-6) regulation as a model. Methods RA fibroblast-like synoviocytes (FLS) and healthy donor macrophages were treated with IL-1 beta, tumour necrosis factor (TNF)alpha, lipopolysaccharide or polyinosinic: polycytidylic acid (poly(I:C)) in the absence or presence of the HDACi trichostatin A (TSA) or ITF2357 (givinostat). IL-6 production and mRNA expression was measured by ELISA and quantitative PCR (qPCR), respectively. Protein acetylation and the activation of intracellular signalling pathways were assessed by immunoblotting. The DNA-binding activity of nuclear factor kappa B (NF kappa B) and activator protein 1 (AP-1) components was measured by ELISA-based assays. Results HDACi (0.25-1.0 mu M) suppressed RA FLS IL-6 production induced by IL-1 beta, TNF alpha and Toll-like receptor ligands. Phosphorylation of mitogen-activated protein kinases and inhibitor of kappa B alpha (I kappa B alpha) following IL-1 beta stimulation were unaffected by HDACi, as were AP-1 composition and binding activity, and c-Jun induction. TSA induced a significant reduction in nuclear retention of NF kappa B in FLS 24 h after IL-1 beta stimulation, but this did not reduce NF kappa B transcriptional activity or correlate temporally with reductions in IL-6 mRNA accumulation. HDACi significantly reduced the stability of IL-6 mRNA in FLS and macrophages. Conclusions Our study identifies a novel, shared molecular mechanism by which HDACi can disrupt inflammatory cytokine production in RA synovial cells, namely the promotion of mRNA decay, and suggests that targeting HDAC activity may be clinically useful in suppressing inflammation in R

    Functionalization of Polycaprolactone Electrospun Osteoplastic Scaffolds with Fluorapatite and Hydroxyapatite Nanoparticles: Biocompatibility Comparison of Human Versus Mouse Mesenchymal Stem Cells

    No full text
    A capability for effective tissue reparation is a living requirement for all multicellular organisms. Bone exits as a precisely orchestrated balance of bioactivities of bone forming osteoblasts and bone resorbing osteoclasts. The main feature of osteoblasts is their capability to produce massive extracellular matrix enriched with calcium phosphate minerals. Hydroxyapatite and its composites represent the most common form of bone mineral providing mechanical strength and significant osteoinductive properties. Herein, hydroxyapatite and fluorapatite functionalized composite scaffolds based on electrospun polycaprolactone have been successfully fabricated. Physicochemical properties, biocompatibility and osteoinductivity of generated matrices have been validated. Both the hydroxyapatite and fluorapatite containing polycaprolactone composite scaffolds demonstrated good biocompatibility towards mesenchymal stem cells. Moreover, the presence of both hydroxyapatite and fluorapatite nanoparticles increased scaffolds’ wettability. Furthermore, incorporation of fluorapatite nanoparticles enhanced the ability of the composite scaffolds to interact and support the mesenchymal stem cells attachment to their surfaces as compared to hydroxyapatite enriched composite scaffolds. The study of osteoinductive properties showed the capacity of fluorapatite and hydroxyapatite containing composite scaffolds to potentiate the stimulation of early stages of mesenchymal stem cells’ osteoblast differentiation. Therefore, polycaprolactone based composite scaffolds functionalized with fluorapatite nanoparticles generates a promising platform for future bone tissue engineering applications

    The Influence of Calcium Glycerophosphate (GPCa) Modifier on Physicochemical, Mechanical, and Biological Performance of Polyurethanes Applicable as Biomaterials for Bone Tissue Scaffolds Fabrication

    No full text
    In this paper we describe the synthesis of poly(ester ether urethane)s (PEEURs) by using selected raw materials to reach a biocompatible polyurethane (PU) for biomedical applications. PEEURs were synthesized by using aliphatic 1,6-hexamethylene diisocyanate (HDI), poly(ethylene glycol) (PEG), α,ω-dihydroxy(ethylene-butylene adipate) (Polios), 1,4-butanediol (BDO) as a chain extender and calcium glycerolphosphate salt (GPCa) as a modifier used to stimulate bone tissue regeneration. The obtained unmodified (PURs) and modified with GPCa (PURs-M) PEEURs were studied by various techniques. It was confirmed that urethane prepolymer reacts with GPCa modifier. Further analysis of the obtained PURs and PURs-M by Fourier transform infrared (FTIR) and Raman spectroscopy revealed the chemical composition typical for PUs by the confirmed presence of urethane bonds. Moreover, the FTIR and Raman spectra indicated that GPCa was incorporated into the main PU chain at least at one-side. The scanning electron microscopy (SEM) analysis of the PURs-M surface was in good agreement with the FTIR and Raman analysis due to the fact that inclusions were observed only at 20% of its surface, which were related to the non-reacted GPCa enclosed in the PUR matrix as filler. Further studies of hydrophilicity, mechanical properties, biocompatibility, short term-interactions, and calcification study lead to the final conclusion that the obtained PURs-M may by suitable candidate material for further scaffold fabrication. Scaffolds were prepared by the solvent casting/particulate leaching technique (SC/PL) combined with thermally-induced phase separation (TIPS). Such porous scaffolds had satisfactory pore sizes (36–100 μm) and porosity (77–82%) so as to be considered as suitable templates for bone tissue regeneration

    LncCDH5-3:3 Regulates Apoptosis, Proliferation, and Aggressiveness in Human Lung Cancer Cells

    No full text
    (1) Lung cancer (both small cell and non-small cell) is the leading cause of new deaths associated with cancers globally in men and women. Long noncoding RNAs (lncRNAs) are associated with tumorigenesis in different types of tumors, including lung cancer. Herein, we discuss: (1) An examination of the expression profile of lncCDH5-3:3 in non-small cell lung cancer (NSCLC), and an evaluation of its functional role in lung cancer development and progression using in vitro models; (2) A quantitative real-time polymerase chain reaction assay that confirms lncCDH5-3:3 expression in tumor samples resected from 20 NSCLC patients, and that shows its statistically higher expression levels at stage III NSCLC, compared to stages I and II. Moreover, knockout (KO) and overexpression, as well as molecular and biochemical techniques, were used to investigate the biological functions of lncCDH5-3:3 in NSCLC cells, with a focus on the cells’ proliferation and migration; (3) The finding that lncCDH5-3:3 silencing promotes apoptosis and probably regulates the cell cycle and E-cadherin expression in adenocarcinoma cell lines. In comparison, lncCDH5-3:3 overexpression increases the expression levels of proliferation and epithelial-to-mesenchymal transition markers, such as EpCAM, Akt, and ERK1/2; however, at the same time, it also stimulates the expression of E-cadherin, which conversely inhibits the mobility capabilities of lung cancer cells; (4) The results of this study, which provide important insights into the role of lncRNAs in lung cancer. Our study shows that lncCDH5-3:3 affects important features of lung cancer cells, such as their viability and motility. The results support the idea that lncCDH5-3:3 is probably involved in the oncogenesis of NSCLC through the regulation of apoptosis and tumor cell metastasis formation

    Interleukin 6/Wnt interactions in rheumatoid arthritis: interleukin 6 inhibits Wnt signaling in synovial fibroblasts and osteoblasts

    No full text
    To evaluate the impact of previously unrecognized negative interaction between the Wnt and interleukin (IL) 6 signaling pathways in skeletal tissues as a possible major mechanism leading to age- and inflammation-related destruction of bone and joints. Luciferase reporter assays were performed to monitor Wnt pathway activation upon IL-6 and tumor necrosis factor-α (TNFα) treatment. Functional contribution of IL-6 and TNFα interaction to inhibition of bone formation was evaluated in vitro using small hairpin RNAs (shRNA) in mouse mesenchymal precursor cells (MPC) of C2C12 and KS483 lines induced to differentiate into osteoblasts by bone morphogenetic proteins (BMP). IL-6 inhibited the activation of Wnt signaling in primary human synoviocytes, and, together with TNFα and Dickkopf-1, inhibited the activation of Wnt response. ShRNA-mediated knockdown of IL-6 mRNA significantly increased early BMP2/7-induced osteogenesis and rescued it from the negative effect of TNFα in C2C12 cells, as well as intensified bone matrix mineralization in KS483 cells. IL-6 is an important mediator in the inhibition of osteoblast differentiation by TNFα, and knockdown of IL-6 partially rescues osteogenesis from the negative control of inflammation. The anti-osteoblastic effects of IL-6 are most likely mediated by its negative interaction with Wnt signaling pathwa
    corecore