247 research outputs found

    EINE NEUE ISOCHINOLIN-RINGSCHLUSSREAKTION

    Get PDF

    Pachydermoperiostosis mimicking the acral abnormalities of acromegaly

    Get PDF

    De novo HNF1 homeobox B mutation as a cause for chronic, treatment-resistant hypomagnesaemia.

    Get PDF
    29-year-old female presenting with an 8-year history of unexplained hypomagnesaemia, which was severe enough to warrant intermittent inpatient admission for intravenous magnesium. Urinary magnesium was inappropriately normal in the context of hypomagnesaemia indicating magnesium wasting. Ultrasound imaging demonstrated unilateral renal cysts and computed tomography of kidneys, ureters and bladder showed a bicornuate uterus. Referral to genetic services and subsequent testing revealed a de novo HNF1B deletion. Learning points: HNF1B loss-of-function mutations are one of the most common monogenic causes of congenital anomalies of the kidney and urinary tract.Those with HNF1B mutations may have some of a constellation of features (renal and hepatic cysts, deranged liver function tests, maturity onset diabetes of the young type 5 (MODY5), bicornuate uterus, hyperparathyroidism, hyperuricaemic gout, but presenting features are highly heterogeneous amongst patients and no genotype/phenotype correlation exists. HNF1B mutations are inherited in an autosomal dominant pattern but up to 50% of cases are de novo.HNF1B mutations can be part of the Chr17q12 deletion syndrome, a contiguous gene deletion syndrome.Inorganic oral magnesium replacements are generally poorly tolerated with side effects of diarrhoea. Organic magnesium compounds, such as magnesium aspartate, are better absorbed oral replacement therapies.This work was supported by a Wellcome Trust Clinical Training fellowship to CES (grant number 097970/Z/11/Z)

    AIPvariant causing familial prolactinoma

    Get PDF
    Pathogenic variants in the aryl hydrocarbon receptor-interacting protein (AIP) gene are increasingly recognised as a cause of familial isolated pituitary adenoma. AIP-associated tumours are most commonly growth hormone (GH) producing. In our cohort of 175 AIP mutation positive patients representing 93 kindreds, 139 (79%) have GH excess, 19 have prolactinoma (17 familial and 2 sporadic cases) and out of the 17 clinically non-functioning tumours 4 were subsequently operated and found to be GH or GH & prolactin immunopositive adenoma. Here we report a family with an AIP variant, in which multiple family members are affected by prolactinoma, but none with GH excess. To our knowledge this is the first reported family with an AIP pathogenic variant to be affected solely by prolactinoma. These data suggest that prolactinoma families represent a small subset of AIP mutation positive kindreds, and similar to young-onset sporadic prolactinomas, AIP screening would be indicated

    GHRH secretion from a pancreatic neuroendocrine tumor causing gigantism in a patient with MEN1.

    Get PDF
    Summary: A male patient with a germline mutation in MEN1 presented at the age of 18 with classical features of gigantism. Previously, he had undergone resection of an insulin-secreting pancreatic neuroendocrine tumour (pNET) at the age of 10 years and had subtotal parathyroidectomy due to primary hyperparathyroidism at the age of 15 years. He was found to have significantly elevated serum IGF-1, GH, GHRH and calcitonin levels. Pituitary MRI showed an overall bulky gland with a 3 mm hypoechoic area. Abdominal MRI showed a 27 mm mass in the head of the pancreas and a 6 mm lesion in the tail. Lanreotide-Autogel 120 mg/month reduced GHRH by 45% and IGF-1 by 20%. Following pancreaticoduodenectomy, four NETs were identified with positive GHRH and calcitonin staining and Ki-67 index of 2% in the largest lesion. The pancreas tail lesion was not removed. Post-operatively, GHRH and calcitonin levels were undetectable, IGF-1 levels normalised and GH suppressed normally on glucose challenge. Post-operative fasting glucose and HbA1c levels have remained normal at the last check-up. While adolescent-onset cases of GHRH-secreting pNETs have been described, to the best of our knowledge, this is the first reported case of ectopic GHRH in a paediatric setting leading to gigantism in a patient with MEN1. Our case highlights the importance of distinguishing between pituitary and ectopic causes of gigantism, especially in the setting of MEN1, where paediatric somatotroph adenomas causing gigantism are extremely rare. Learning points: It is important to diagnose gigantism and its underlying cause (pituitary vs ectopic) early in order to prevent further growth and avoid unnecessary pituitary surgery. The most common primary tumour sites in ectopic acromegaly include the lung (53%) and the pancreas (34%) (1): 76% of patients with a pNET secreting GHRH showed a MEN1 mutation (1). Plasma GHRH testing is readily available in international laboratories and can be a useful diagnostic tool in distinguishing between pituitary acromegaly mediated by GH and ectopic acromegaly mediated by GHRH. Positive GHRH immunostaining in the NET tissue confirms the diagnosis. Distinguishing between pituitary (somatotroph) hyperplasia secondary to ectopic GHRH and pituitary adenoma is difficult and requires specialist neuroradiology input and consideration, especially in the MEN1 setting. It is important to note that the vast majority of GHRH-secreting tumours (lung, pancreas, phaeochromocytoma) are expected to be visible on cross-sectional imaging (median diameter 55 mm) (1). Therefore, we suggest that a chest X-ray and an abdominal ultrasound checking the adrenal glands and the pancreas should be included in the routine work-up of newly diagnosed acromegaly patients

    Translating the potential of the urine steroid metabolome to stage NAFLD (TrUSt-NAFLD): study protocol for a multicentre, prospective validation study.

    Get PDF
    INTRODUCTION: Non-alcoholic fatty liver disease (NAFLD) affects approximately one in four individuals and its prevalence continues to rise. The advanced stages of NAFLD with significant liver fibrosis are associated with adverse morbidity and mortality outcomes. Currently, liver biopsy remains the 'gold-standard' approach to stage NAFLD severity. Although generally well tolerated, liver biopsies are associated with significant complications, are resource intensive, costly, and sample only a very small area of the liver as well as requiring day case admission to a secondary care setting. As a result, there is a significant unmet need to develop non-invasive biomarkers that can accurately stage NAFLD and limit the need for liver biopsy. The aim of this study is to validate the use of the urine steroid metabolome as a strategy to stage NAFLD severity and to compare its performance against other non-invasive NAFLD biomarkers. METHODS AND ANALYSIS: The TrUSt-NAFLD study is a multicentre prospective test validation study aiming to recruit 310 patients with biopsy-proven and staged NAFLD across eight centres within the UK. 150 appropriately matched control patients without liver disease will be recruited through the Oxford Biobank. Blood and urine samples, alongside clinical data, will be collected from all participants. Urine samples will be analysed by liquid chromatography-tandem mass spectroscopy to quantify a panel of predefined steroid metabolites. A machine learning-based classifier, for example, Generalized Matrix Relevance Learning Vector Quantization that was trained on retrospective samples, will be applied to the prospective steroid metabolite data to determine its ability to identify those patients with advanced, as opposed to mild-moderate, liver fibrosis as a consequence of NAFLD. ETHICS AND DISSEMINATION: Research ethical approval was granted by West Midlands, Black Country Research Ethics Committee (REC reference: 21/WM/0177). A substantial amendment (TrUSt-NAFLD-SA1) was approved on 26 November 2021. TRIAL REGISTRATION NUMBER: ISRCTN19370855

    A study of acromegaly-associated headache with somatostatin analgesia.

    Get PDF
    To characterise somatostatin analogue responsive headache in acromegaly, hitherto not systematically documented in a significant cohort. Using the UK pituitary network, we have clinically characterised a cohort of 18 patients suffering from acromegaly-related headache with a clear response to somatostatin analogues. The majority of patients had chronic migraine (78%) as defined by the International Headache Society diagnostic criteria. Headache was present at the time of acromegaly presentation and clearly associated temporally with disease activity in all cases. Short-acting somatostatin analogues uniquely resolved pain within minutes and the mean duration of analgesia was 1-6 hours. Patients on long-acting analogues required less short-acting injections (mean 3.7 vs. 10.4 injections per day, p=0.005). 94% used somatostatin analogues to control ongoing headache pain. All patients presented with macroadenoma, most had incomplete resection (94%) and headache was ipsilateral to remnant tissue (94%). Although biochemical control was achieved in 78% of patients, headache remained in 71% of them. Patients selected for this study had ongoing headache post-treatment (mean duration 16 years after diagnosis); only 4 patients reached headache remission 26 years (mean, range 14-33) after the diagnosis. Headache in acromegaly patients can be persistent, severe, unrelieved by surgery, long-lasting and uncoupled from biochemical control. We show here that long-acting analogues allow a decrease in the number of short-acting analogue injections for headache relief. Further studies are needed to understand the mechanisms, markers and tumour tissue characteristics of acromegaly-related headache. Until then, this publication serves to provide the clinical characteristics as a reference point for further study

    The clinical outcomes of imaging modalities for surgical management Cushing’s disease – A systematic review and meta-analysis

    Get PDF
    Introduction: Cushing’s disease presents major diagnostic and management challenges. Although numerous preoperative and intraoperative imaging modalities have been deployed, it is unclear whether these investigations have improved surgical outcomes. Our objective was to investigate whether advances in imaging improved outcomes for Cushing’s disease. Methods: Searches of PubMed and EMBASE were conducted. Studies reporting on imaging modalities and clinical outcomes after surgical management of Cushing’s disease were included. Multilevel multivariable meta-regressions identified predictors of outcomes, adjusting for confounders and heterogeneity prior to investigating the effects of imaging. Results: 166 non-controlled single-arm studies were included, comprising 13181 patients over 44 years. The overall remission rate was 77.0% [CI: 74.9%-79.0%]. Cavernous sinus invasion (OR: 0.21 [CI: 0.07-0.66]; p=0.010), radiologically undetectable lesions (OR: 0.50 [CI: 0.37–0.69]; p<0.0001), previous surgery (OR=0.48 [CI: 0.28–0.81]; p=0.008), and lesions ≥10mm (OR: 0.63 [CI: 0.35–1.14]; p=0.12) were associated with lower remission. Less stringent thresholds for remission was associated with higher reported remission (OR: 1.37 [CI: 1.1–1.72]; p=0.007). After adjusting for this heterogeneity, no imaging modality showed significant differences in remission compared to standard preoperative MRI. The overall recurrence rate was 14.5% [CI: 12.1%-17.1%]. Lesion ≥10mm was associated with greater recurrence (OR: 1.83 [CI: 1.13–2.96]; p=0.015), as was greater duration of follow-up (OR: 1.53 (CI: 1.17–2.01); p=0.002). No imaging modality was associated with significant differences in recurrence. Despite significant improvements in detection rates over four decades, there were no significant changes in the reported remission or recurrence rates. Conclusion: A lack of controlled comparative studies makes it difficult to draw definitive conclusions. Within this limitation, the results suggest that despite improvements in radiological detection rates of Cushing’s disease over the last four decades, there were no changes in clinical outcomes. Advances in imaging alone may be insufficient to improve surgical outcomes. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42020187751
    • …
    corecore