18 research outputs found

    Far-from-equilibrium quantum many-body dynamics

    Full text link
    The theory of real-time quantum many-body dynamics as put forward in Ref. [arXiv:0710.4627] is evaluated in detail. The formulation is based on a generating functional of correlation functions where the Keldysh contour is closed at a given time. Extending the Keldysh contour from this time to a later time leads to a dynamic flow of the generating functional. This flow describes the dynamics of the system and has an explicit causal structure. In the present work it is evaluated within a vertex expansion of the effective action leading to time evolution equations for Green functions. These equations are applicable for strongly interacting systems as well as for studying the late-time behaviour of nonequilibrium time evolution. For the specific case of a bosonic N-component phi^4 theory with contact interactions an s-channel truncation is identified to yield equations identical to those derived from the 2PI effective action in next-to-leading order of a 1/N expansion. The presented approach allows to directly obtain non-perturbative dynamic equations beyond the widely used 2PI approximations.Comment: 20 pp., 6 figs; submitted version with added references and typos corrected

    Spatial and Temporal Operation of the Scotia Sea Ecosystem

    No full text
    Analysis of the operation of ocean ecosystems requires an understanding of how the structure of the ecosystem is determined by interactions between physical, chemical and biological processes. Such analysis needs to consider the interactions across a wide range of spatial (approx. 10 m–10,000 km) and temporal (minutes to centuries) scales and trophic levels (primary producers to top predators) (Angel, 1994; Murphy et al., 1988;Werner et al., 2003). There are, however, few areas of the global ocean where there is sufficient knowledge to achieve such an integrated analysis (deYoung et al., 2004). Circulation patterns of the major ocean gyres, such as the North Atlantic and Pacific Oceans, involve movement of water masses through very different climatic regimes which favour distinctly different groups of organisms (Longhurst, 1998). Generating comprehensive views of the operation of oceanic ecosystems is complicated as a result of such heterogeneity in species distribution and ecosystem structure (Levin, 1990; Longhurst, 1998; Murphy et al., 1988). In contrast to othe

    The Effect of the Lipid Layer on Tear Film Behaviour

    No full text
    This paper investigates the effect of surfactants during tear film deposition and subsequent thinning. The surfactants occur naturally on the surface of the tear film in the form of a lipid layer. A lubrication model is developed that describes lipid spreading and film height evolution. It is shown that lipids may play an important role in drawing the tear film up the cornea during the opening phase of the blink. Further, nonuniform distributions of lipids may lead to a rapid thinning of the tear film behind the advancing lipid front (shock). Experiments using a fluorescein dye technique and using a tearscope were undertaken in order to visualise the motion of the lipid layer and any associated shocks immediately after a blink. It is found that the lipid layer continues to spread upwards on the cornea after the opening phase of the blink, in agreement with the model. Using the experimental data, lipid particles were tracked in order to determine the surface velocity and these results are compared to the model predictions

    Elastohydrodynamics of the eyelid wiper

    No full text
    This paper presents an elastohydrodynamic model of the human eyelid wiper. Standard lubrication theory is applied to the fluid layer between the eyelid wiper and ocular surface. The role of the lubrication film is to reduce the shear stresses by preventing solid to solid contact between the eyelid wiper and ocular surface. For the lubrication film to be effective, it is required that the orientation of the eyelid wiper changes between the opening and closing phases of a blink. In order to model this, the hydrodynamic model is coupled with an elastic mattress model for the soft tissue of the eyelid wiper and ocular surface. This leads to a one-dimensional non-linear partial differential equation governing the fluid pressure in the lubrication film. In order to solve the differential equation, a loading condition or constraint equation must be specified. The resulting system is then solved numerically. The model allows predictions of the tear film flux from under the upper eyelid, as well as normal and shear stresses acting on the ocular surface. These factors are important in relation to dry eye syndrome, deformation of the cornea and contact lens design. It is found that the pressure and shear stress under the eyelid act across a length of approximately 0.1 mm which is consistent with clinical observations. It order to achieve a flow of tears from under the upper eyelid during a blink, the model requires that the normal force the eyelid applies to the ocular surface during the closing phase of the blink is significantly higher than during the opening phase of the blink
    corecore