8 research outputs found

    Exopolysaccharide and Kestose Production by Lactobacillus sanfranciscensis LTH2590

    No full text
    The effect was investigated of sucrose concentration on sucrose metabolism and on the formation of exopolysaccharide (EPS) by Lactobacillus sanfranciscensis LTH2590 in pH-controlled fermentations with sucrose concentrations ranging from 20 to 160 g liter(−1). The EPS production increased and the relative sucrose hydrolysis activity decreased by increasing the sucrose concentration in the medium. The carbon recovery decreased from 95% at a sucrose concentration of 30 g liter(−1) to 58% at a sucrose concentration of 160 g liter(−1) because of the production of an unknown metabolite by L. sanfranciscensis. This metabolite was characterized as a fructo-oligosaccharide. The oligosaccharide produced by L. sanfranciscensis was purified and characterized as a trisaccharide with a glucose/fructose ratio of 1:2. The comparison of the retention time of this oligosaccharide and that of pure oligosaccharide standards using two different chromatography methods revealed that the oligosaccharide produced by L. sanfranciscensis LTH2590 is 1-kestose. Kestose production increased concomitantly with the initial sucrose concentration in the medium

    Glutathione Reductase from Lactobacillus sanfranciscensis DSM20451T: Contribution to Oxygen Tolerance and Thiol Exchange Reactions in Wheat Sourdoughs▿

    No full text
    The effect of the glutathione reductase (GshR) activity of Lactobacillus sanfranciscensis DSM20451T on the thiol levels in fermented sourdoughs was determined, and the oxygen tolerance of the strain was also determined. The gshR gene coding for a putative GshR was sequenced and inactivated by single-crossover integration to yield strain L. sanfranciscensis DSM20451TΔgshR. The gene disruption was verified by sequencing the truncated gshR and surrounding regions on the chromosome. The gshR activity of L. sanfranciscensis DSM20451TΔgshR was strongly reduced compared to that of the wild-type strain, demonstrating that gshR indeed encodes an active GshR enzyme. The thiol levels in wheat doughs fermented with L. sanfranciscensis DSM20451 increased from 9 ÎŒM to 10.5 ÎŒM sulfhydryl/g of dough during a 24-h sourdough fermentation, but in sourdoughs fermented with L. sanfranciscensis DSM20451TΔgshR and in chemically acidified doughs, the thiol levels decreased to 6.5 to 6.8 ÎŒM sulfhydryl/g of dough. Remarkably, the GshR-negative strains Lactobacillus pontis LTH2587 and Lactobacillus reuteri BR11 exerted effects on thiol levels in dough comparable to those of L. sanfranciscensis. In addition to the effect on thiol levels in sourdough, the loss of GshR activity in L. sanfranciscensis DSM20451TΔgshR resulted in a loss of oxygen tolerance. The gshR mutant strain exhibited a strongly decreased aerobic growth rate on modified MRS medium compared to either the growth rate under anaerobic conditions or that of the wild-type strain, and aerobic growth was restored by the addition of cysteine. Moreover, the gshR mutant strain was more sensitive to the superoxide-generating agent paraquat

    Lactobacillus hammesii sp nov., isolated from French sourdough

    No full text
    International audienceTwenty morphologically different strains were chosen from French wheat sourdough isolates. Cells were Gram-positive, non-spore-forming, non-motile rods. The isolates were identified using amplified-fragment length polymorphism, randomly amplified polymorphic DNA and 16S rRNA gene sequence analysis. All isolates were members of the genus Lactobacillus. They were identified as representing Lactobacillus plantarum, Lactobacillus paralimentarius, Lactobacillus sanfranciscensis, Lactobacillus spicheri and Lactobacillus sakei. However, two isolates (LP38(T) and LP39) could be clearly discriminated from recognized Lactobacillus species on the basis of genotyping methods. 16S rRNA gene sequence similarity and DNA-DNA relatedness data indicate that the two strains belong to a novel Lactobacillus species, for which the name Lactobacillus hammesii is proposed. The type strain is LP38(T) (=DSM 16381(T)=CIP 108387(T)=TMW 1.1236(T))

    Lactobacillus nantensis sp nov., isolated from French wheat sourdough

    No full text
    International audienceA polyphasic taxonomic study of the bacterial flora isolated from traditional French wheat sourdough, using phenotypic characterization and phylogenetic as well as genetic methods, revealed a consistent group of isolates that could not be assigned to any recognized species. These results were confirmed by randomly amplified polymorphic DNA and amplified fragment length polymorphism fingerprinting analyses. Cells were Gram-positive, homofermentative rods. Comparative 16S rRNA gene sequence analysis of the representative strain LP33T indicated that these strains belong to the genus Lactobacillus and that they formed a branch distinct from their closest relatives Lactobacillus farciminis, Lactobacillus alimentarius, Lactobacillus paralimentarius and Lactobacillus mindensis. DNA-DNA reassociation experiments with the three phylogenetically closest Lactobacillus species confirmed that LP33T (= DSM 16982T = CIP 108546T = TMW 1.1265T) represents the type strain of a novel species, for which the name Lactobacillus nantensis sp. nov. is proposed
    corecore