54 research outputs found

    EPS-SJ exopolisaccharide produced by the strain Lactobacillus paracasei subsp. paracasei BGSJ2-8 is involved in adhesion to epithelial intestinal cells and decrease on E. coli association to Caco-2 cells

    Get PDF
    The aim of this study was to determine the role of an exopolysaccharide produced by natural dairy isolate Lactobacillus paracasei subsp. paracasei BGSJ2-8, in the adhesion to intestinal epithelial cells and a decrease in Escherichia coli's association with Caco-2 cells. Annotation of the BGSJ2-8 genome showed the presence of a gene cluster, epsSJ, which encodes the biosynthesis of the strain-specific exopolysaccharide EPS-SJ, detected as two fractions (P1 and P2) by size exclusion chromatography (SEC) coupled with multi-angle laser light scattering (MALLS) detection. SEC-MALLS analysis revealed that an EPS-SJ- mutant (EPS7, obtained by insertion mutagenesis of the glps_2198 gene encoding primary glycosyltransferase) does not produce the P2 fraction of EPS-SJ. Transmission electron microscopy showed that EPS7 mutant has a thinner cell wall compared to the EPS-SJ strain BGSJ2-83 (a plasmid free-derivative of BGSJ2-8). Interestingly, strain BGSJ2-83 showed higher adhesion to Caco-2 epithelial intestinal cell line than the EPS7 mutant. Accordingly, BGSJ2-83 effectively reduced E. coli ATCC25922's association with Caco-2 cells, while EPS7 did not show statistically significant differences. In addition, the effect of EPS-SJ on the proliferation of lymphocytes in gastrointestinal associated lymphoid tissue (GALT) was tested and the results showed that the reduction of GALT lymphocyte proliferation was higher by BGSJ2-83 than by the mutant. To the best of our knowledge this is the first report indicating that the presence of EPS (EPS-SJ) on the surface of lactobacilli can improve communication between bacteria and intestinal epithelium*Implying its possible role in gut colonization.Peer Reviewe

    EPS-SJ Exopolisaccharide Produced by the Strain Lactobacillus paracasei subsp paracasei BGSJ2-8 Is Involved in Adhesion to Epithelial Intestinal Cells and Decrease on E-coil Association to Caco-2 Cells

    Get PDF
    The aim of this study was to determine the role of an exopolysaccharide produced by natural dairy isolate Lactobacillus paracasel subsp. paracasel BGSJ2-8, in the adhesion to intestinal epithelial cells and a decrease in Escherichia coil's association with Caco-2 cells. Annotation of the BGSJ2-8 genome showed the presence of a gene cluster, epsSJ, which encodes the biosynthesis of the strain-specific exopolysaccharide EPS-SJ, detected as two fractions (P1 and P2) by size exclusion chromatography (SEC) coupled with multi angle laser light scattering (MALLS) detection. SEC MALLS analysis revealed that an EPS-SJ(-) mutant (EPS7, obtained by insertion mutagenesis of the glps_2198 gene encoding primary glycosyltransferase) does not produce the P2 fraction of EPS-SJ. Transmission electron microscopy showed that EPS7 mutant has a thinner cell wall compared to the EPS-SJ(+) strain BGSJ2-83 (a plasmid free derivative of BGSJ2-8). Interestingly, strain BGSJ2-83 showed higher adhesion to Caco-2 epithelial intestinal cell line than the EPS7 mutant. Accordingly, BGSJ2-83 effectively reduced E. coil ATCC25922's association with Caco-2 cells, while EPS7 did not show statistically significant differences. In addition, the effect of EPS-SJ on the proliferation of lymphocytes in gastrointestinal associated lymphoid tissue (GALT) was tested and the results showed that the reduction of GALT lymphocyte proliferation was higher by BGSJ2-83 than by the mutant. To the best of our knowledge this is the first report indicating that the presence of EPS (EPS-SJ) on the surface of lactobacilli can improve communication between bacteria and intestinal epithelium, implying its possible role in gut colonization

    Leptin immunoexpression and innervation in rat interscapular brown adipose tissue of cold-acclimated rats: the effects of L-arginine and L-NAME

    No full text
    The aim of the present study was to explore the effect of nitric oxide on leptin immunoexpression and innervation in interscapular brown adipose tissue (IBAT) of room-and cold-acclimated rats. Animals acclimated both to room-temperature (22 +/- 1 degrees C) and cold (4 +/- 1 degrees C) were treated with L-arginine, a substrate for nitric oxide synthases (NOSs), or N?-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOSs, for 45 days. Leptin expression and localization in brown adipocytes was studied by immunohistochemistry, and innervation stained by the Bodian method. Strong leptin immunopositivity was observed in brown adipocytes cytoplasm of all room-acclimated groups, but nuclear leptin positivity was found only in L-NAME treated rats. In cold-acclimated control and L-NAME treated rats leptin immunopositivity was absent, while L-arginine treatment reversed the cold-induced suppression of leptin expression. Comparing to control, L-arginine, and even more L-NAME, at 22 +/- 1 degrees C induced greater innervation. In conclusion, L-arginine treatment changes leptin expression pattern on cold in rat IBAT.nul

    Leptin immunoexpression and innervation in rat interscapular brown adipose tissue of cold-acclimated rats: the effects of L-arginine and L-NAME

    No full text
    The aim of the present study was to explore the effect of nitric oxide on leptin immunoexpression and innervation in interscapular brown adipose tissue (IBAT) of room-and cold-acclimated rats. Animals acclimated both to room-temperature (22 +/- 1 degrees C) and cold (4 +/- 1 degrees C) were treated with L-arginine, a substrate for nitric oxide synthases (NOSs), or N?-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOSs, for 45 days. Leptin expression and localization in brown adipocytes was studied by immunohistochemistry, and innervation stained by the Bodian method. Strong leptin immunopositivity was observed in brown adipocytes cytoplasm of all room-acclimated groups, but nuclear leptin positivity was found only in L-NAME treated rats. In cold-acclimated control and L-NAME treated rats leptin immunopositivity was absent, while L-arginine treatment reversed the cold-induced suppression of leptin expression. Comparing to control, L-arginine, and even more L-NAME, at 22 +/- 1 degrees C induced greater innervation. In conclusion, L-arginine treatment changes leptin expression pattern on cold in rat IBAT.nul

    Free radical equilibrium in interscapular brown adipose tissue: Relationship between metabolic profile and antioxidative defense

    No full text
    Interscapular brown adipose tissue (IBAT) hyperplasia involves a new metabolic and structural profile, resulting from acclimation of animals to a cold environment. Cold-induced changes of several antioxidative defense (AD) components in IBAT and their interrelationship with uncoupling protein 1 (UCP1), sympathetic innervation and apoptosis were studied using cold-acclimated adult rat males (4 +/- 1 degrees C, 45 days). Their age-matches were maintained at 22 +/- 1 degrees C serving as the controls. In cold-adapted rats, activities of CuZn- and Mn-superoxide dismutase (SOD) and apoptosis were reduced, while catalase (CAT), glutathione peroxidase (GSH-Px), glutathione S-transferase (GST) activities and glutathione (GSH) content were increased compared to the control. IBAT mass, protein content, plasma free fatty acid (FFA) concentration, sympathetic innervation and UCP1 level were significantly increased in cold-acclimated group compared to the corresponding control. These results suggest that decreased CuZn and MnSOD activities in IBAT represent an adaptive response due to UCP1-induced mitochondrial uncoupling. Additionally, intensive fatty acid oxidation led to an increased H2O2 production which resulted in increased CAT, GSH-Px and GST activities and GSH level. Generally speaking, cold-induced changes of AD in the IBAT are closely connected with newly established metabolic profile in this tissue, thus making an important part of the entire tissue homeostasis including cell survival. (c) 2005 Elsevier Inc. All rights reserved.nul

    Antioxidative defense organization in retroperitoneal white adipose tissue during acclimation to cold-The involvement of L-arginine/NO pathway

    No full text
    1. Retroperitoneal white adipose tissue (RpWAT) antioxidative defense was investigated in untreated, L-arginine-treated and N(omega)-nitro-L-arginine methyl ester (L-NAME)-treated rats kept at 4 +/- 1 degrees C (1, 3, 7, 12, 21 and 45 days) and compared to control rats at 22 +/- 1 degrees C. 2. Cold-acclimation-induced RpWAT weight decrease was accompanied by a decline in glutathione level and increased activity of manganese superoxide dismutaise (MnSOD), glutathione S-transferase (GST), catalase, glutathione peroxidase and glutathione reductase at different time-points. 3. L-arginine accelerated RpWAT weight decrease, the increase in MnSOD and GST activities and the prolonged increase of catalase, MnSOD and GST activities. L-NAME delayed cold-induced catalase activity increase and tissue weight decrease. Prolonged L-NAME-treatment had a similar effect on RpWAT as L-arginine. 4. Results suggest the involvement Of L-arginine/NO pathway in RpWAT oxidative metabolic augmentation induced by cold-acclimation. (C) 2009 Elsevier Ltd. All rights reserved.Ministry of Science and Technological Development, Republic of Serbia [143050

    NO modulates the molecular basis of rat interscapular brown adipose tissue thermogenesis

    No full text
    Molecular mechanisms underlying interscapular brown adipose tissue (IBAT) thermogenesis were elucidated. Namely, gene and/or protein expression of uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor gamma (PPAR gamma), PPAR gamma-coactivator-1 alpha (PGC-1 alpha), vascular endothelial growth factor (VEGF) and proliferating cell nuclear antigen (PCNA) - key molecules that regulate thermogenesis-related processes - mitochondriogenesis, angiogenesis and IBAT hyperplasia, in rats subjected to cold (4 +/- 1 degrees C) for 1, 3, 7, 12, 21 and 45 days were investigated. Particularly, to examine influence of nitric oxide (NO) on IBAT thermogenic-program, cold-exposed animals were treated by L-arginine or N(omega)-nitro-L-arginine-methyl ester (L-NAME). Related to control (22 +/- 1 degrees C), cold induced time-coordinated UCP1, PPAR gamma and PGC-1 alpha transcriptional activation accompanied by PCNA activation and increased VEGF immunolabeling that correlate with endothelial NO synthase (eNOS) transcriptional activation suggesting NO involvement in these thermogenic-factors activation. Observed molecular changes were translated into increased mitochondrialremodeling, angiogenesis, and IBAT hyperplasia. L-Arginine augmented and prolonged cold-induced increase of eNOS, inducible NOS and thermogenic-molecules expression, IBAT nerve supply, vascularity, hyperplasia and mitochondrial-remodeling, while L-NAME had an opposite effects. Results show that NO improves thermogenesis-related mitochondriogenesis, angiogenesis and tissue hyperplasia, positively affecting molecular basis of these processes, suggesting that NO is an essential regulator of IBAT thermogenic-program operating, at genes, proteins and tissue structure levels. (C) 2010 Elsevier Inc. All rights reserved.Ministry of Science and Technological Development of the Republic of Serbia [143050]; [COST FA0602 Action
    corecore