17 research outputs found

    A possible model for initiationof ULF oscillation in magma

    No full text
    During the period just prior to an earthquake, an electomagnetic emission develops over seismic zones. In this paper, a model of excitation of magnetic fields over zones of volcanic activity is proposed. Movement of magma along volcanic channels precedes an earthquake, hydrodynamic processes in the moving magma can lead to formation of waves and vortices in the flow which, in turn, can cause development of magnetic fields in conducting magma. During this period, the movement of the magma intensifies leading to a corresponding intensification of the magnetic fields. In this paper, different possible sources of ULF pulsation in magma are examined,and the variable geomagnetic fields induced by this pulsation are estimated.PublishedJCR Journalope

    A possible model for initiationof ULF oscillation in magma

    No full text
    During the period just prior to an earthquake, an electomagnetic emission develops over seismic zones. In this paper, a model of excitation of magnetic fields over zones of volcanic activity is proposed. Movement of magma along volcanic channels precedes an earthquake, hydrodynamic processes in the moving magma can lead to formation of waves and vortices in the flow which, in turn, can cause development of magnetic fields in conducting magma. During this period, the movement of the magma intensifies leading to a corresponding intensification of the magnetic fields. In this paper, different possible sources of ULF pulsation in magma are examined,and the variable geomagnetic fields induced by this pulsation are estimated

    ELECTROMAGNETIC SAFETY OF ELECTRIC TRANSPORT SYSTEMS: MAIN SOURCES AND PARAMETERS OF MAGNETIC FIELDS

    No full text
    Magnetic fields produced by electric drive vehicles may break electromagnetic safety. For electromagnetic safety and electromagnetic compatibility knowledge about characteristics and sources of magnetic fields in the electric transport is necessary. The article deals with analysis of available data about magnetic fields in electric cars and comparison with results of our measurements carried out in the other types of electrified transport systems

    PHASE GRADIENT METHOD OF MAGNETIC FIELD MEASUREMENTS IN ELECTRIC VEHICLES

    No full text
    Operation of electric and hybrid vehicles demands real time magnetic field control, for instance, for fire and electromagnetic safety. The article deals with a method of magnetic field measurements onboard electric cars taking into account peculiar features of these fields. The method is based on differential methods of measurements, and minimizes the quantity of magnetic sensors

    Investigation of the ULFelectromagnetic phenomena related toearthquakes: contemporary achievementsand the perspectives

    No full text
    The results of ULF electromagnetic signal observations in seismoactive regions prior to earthquakes are presented and discussed. The new differential measurement technique developed in SPbF IZMIRAN for location of the ULF emission sources of space and lithosphere origin is described. The MVC-2DS geophysical instrumentation is introduced as a promising tool for registration of ULF signals related to earthquakes (both seismic and electromagnetic ones). Methods are proposed for ULF data processing to investigate the preparation processes in the earthquake source regions and to distinguish seismogenic signals on the background of space pulsations. Some examples of application of those methods for study of the earthquake precursory signatures are presented. Perspectives of seismo-electromagnetic tomography experiments in seismoactive regions, using MVC-2DS technique, are discussed in relation to the development of earthquake prediction methods

    Investigation of the ULFelectromagnetic phenomena related toearthquakes: contemporary achievementsand the perspectives

    No full text
    The results of ULF electromagnetic signal observations in seismoactive regions prior to earthquakes are presented and discussed. The new differential measurement technique developed in SPbF IZMIRAN for location of the ULF emission sources of space and lithosphere origin is described. The MVC-2DS geophysical instrumentation is introduced as a promising tool for registration of ULF signals related to earthquakes (both seismic and electromagnetic ones). Methods are proposed for ULF data processing to investigate the preparation processes in the earthquake source regions and to distinguish seismogenic signals on the background of space pulsations. Some examples of application of those methods for study of the earthquake precursory signatures are presented. Perspectives of seismo-electromagnetic tomography experiments in seismoactive regions, using MVC-2DS technique, are discussed in relation to the development of earthquake prediction methods

    Saint Petersburg magnetic observatory: from Voeikovo subdivision to INTERMAGNET certification

    No full text
    Since June 2012 the Saint Petersburg magnetic observatory is being developed and maintained by two institutions of the Russian Academy of Sciences (RAS) – the Geophysical Center of RAS (GC RAS) and the Saint Petersburg branch of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of RAS (IZMIRAN SPb). On 29 April 2016 the application of the Saint Petersburg observatory (IAGA code SPG) for introduction into the INTERMAGNET network was accepted after approval by the experts of the first definitive dataset over 2015, produced by the GC RAS, and on 9 June 2016 the SPG observatory was officially certified. One of the oldest series of magnetic observations, originating in 1834, was resumed in the 21st century, meeting the highest quality standards and all modern technical requirements. In this paper a brief historical and scientific background of the SPG observatory foundation and development is given, the stages of its renovation and upgrade in the 21st century are described, and information on its current state is provided. The first results of the observatory functioning are discussed and geomagnetic variations registered at the SPG observatory are assessed and compared with geomagnetic data from the INTERMAGNET observatories located in the same region
    corecore