5 research outputs found

    Aging is associated with an earlier arrival of reflected waves without a distal shift in reflection sites

    Get PDF
    Background-Despite pronounced increases in central pulse wave velocity (PWV) with aging, reflected wave transit time (RWTT), traditionally defined as the timing of the inflection point (T-INF) in the central pressure waveform, does not appreciably decrease, leading to the controversial proposition of a "distal-shift" of reflection sites. T-INF, however, is exceptionally prone to measurement error and is also affected by ejection pattern and not only by wave reflection. We assessed whether RWTT, assessed by advanced pressure-flow analysis, demonstrates the expected decline with aging. Methods and Results-We studied a sample of unselected adults without cardiovascular disease (n=48; median age 48 years) and a clinical population of older adults with suspected/established cardiovascular disease (n=164; 61 years). We measured central pressure and flow with carotid tonometry and phase-contrast MRI, respectively. We assessed RWTT using wave-separation analysis (RWTTWSA) and partially distributed tube-load (TL) modeling (RWTTTL). Consistent with previous reports, T-INF did not appreciably decrease with age despite pronounced increases in PWV in both populations. However, aging was associated with pronounced decreases in RWTTWSA (general population -15.0 ms/decade, P<0.001; clinical population -9.07 ms/decade, P=0.003) and RWTTTL (general -15.8 ms/decade, P<0.001; clinical -11.8 ms/decade, P<0.001). There was no evidence of an increased effective reflecting distance by either method. TINF was shown to reliably represent RWTT only under highly unrealistic assumptions about input impedance. Conclusions-RWTT declines with age in parallel with increased PWV, with earlier effects of wave reflections and without a distal shift in reflecting sites. These findings have important implications for our understanding of the role of wave reflections with aging

    Isosorbide dinitrate, with or without hydralazine, does not reduce wave reflections, left ventricular hypertrophy, or myocardial fibrosis in patients with heart failure with preserved ejection fraction

    Get PDF
    Background-Wave reflections, which are increased in patients with heart failure with preserved ejection fraction, impair diastolic function and promote pathologic myocardial remodeling. Organic nitrates reduce wave reflections acutely, but whether this is sustained chronically or affected by hydralazine coadministration is unknown. Methods and Results-We randomized 44 patients with heart failure with preserved ejection fraction in a double-blinded fashion to isosorbide dinitrate (ISDN; n=13), ISDN+hydralazine (ISDN+hydral; n=15), or placebo (n=16) for 6months. The primary end point was the change in reflection magnitude (RM; assessed with arterial tonometry and Doppler echocardiography). Secondary end points included change in left ventricular mass and fibrosis, measured with cardiac magnetic resonance imaging, and the 6-minute walk distance. ISDN reduced aortic characteristic impedance (mean baseline=0.15 [95% CI, 0.14-0.17], 3 months=0.11 [95% CI, 0.10-0.13], 6 months=0.10 [95% CI, 0.08-0.12] mmHg/mL per second; P=0.003) and forward wave amplitude (P-f, mean baseline=54.8 [95% CI, 47.6-62.0], 3 months=42.2 [95% CI, 33.2-51.3]; 6 months=37.0 [95% CI, 27.2-46.8] mmHg, P=0.04), but had no effect on RM (P=0.64), left ventricular mass (P=0.33), or fibrosis (P=0.63). ISDN+hydral increased RM (mean baseline=0.39 [95% CI, 0.35-0.43]; 3 months=0.31 [95% CI, 0.25-0.36]; 6 months=0.44 [95% CI, 0.37-0.51], P=0.03), reduced 6-minute walk distance (mean baseline=343.3 [95% CI, 319.2-367.4]; 6 months=277.0 [95% CI, 242.7-311.4] meters, P=0.022), and increased native myocardial T1 (mean baseline=1016.2 [95% CI, 1002.7-1029.7]; 6 months=1054.5 [95% CI, 1036.5-1072.3], P=0.021). A high proportion of patients experienced adverse events with active therapy (ISDN=61.5%, ISDN+hydral=60.0%; placebo=12.5%; P=0.007). Conclusions-ISDN, with or without hydralazine, does not exert beneficial effects on RM, left ventricular remodeling, or submaximal exercise and is poorly tolerated. ISDN+hydral appears to have deleterious effects on RM, myocardial remodeling, and submaximal exercise. Our findings do not support the routine use of these vasodilators in patients with heart failure with preserved ejection fraction

    Beta-Blocker Use Is Associated With Impaired Left Atrial Function in Hypertension

    Get PDF
    BACKGROUND: Impaired left atrial (LA) mechanical function is present in hypertension and likely contributes to various complications, including atrial arrhythmias, stroke, and heart failure. Various antihypertensive drug classes exert differential effects on central hemodynamics and left ventricular function. However, little is known about their effects on LA function. METHODS AND RESULTS: We studied 212 subjects with hypertension and without heart failure or atrial fibrillation. LA strain was measured from cine steady-state free-precession cardiac MRI images using feature-tracking algorithms. In multivariable models adjusted for age, sex, race, body mass index, blood pressure, diabetes mellitus, LA volume, left ventricular mass, and left ventricular ejection fraction, beta-blocker use was associated with a lower total longitudinal strain (standardized beta=-0.21; P=0.008), and lower LA expansion index (standardized beta=-0.30; P \u3c 0.001), indicating impaired LA reservoir function. Beta-blocker use was also associated with a lower positive strain (standardized beta=-0.19; P=0.012) and early diastolic strain rate (standardized beta=0.15; P=0.039), indicating impaired LA conduit function. Finally, beta-blocker use was associated with a lower (less negative) late-diastolic strain (standardized beta=0.15; P=0.049), strain rate (standardized beta=0.18; P=0.019), and a lower active LA emptying fraction (standardized beta=-0.27; P\u3c 0.001), indicating impaired booster pump function. Use of other antihypertensive agents was not associated with LA function. CONCLUSIONS: Beta-blocker use is significantly associated with impaired LA function in hypertension. This association could underlie the increased risk of atrial fibrillation and stroke seen with the use of beta-blockers (as opposed to other antihypertensive agents) demonstrated in recent trials
    corecore