8 research outputs found

    An IoT-Based Framework and Ensemble Optimized Deep Maxout Network Model for Breast Cancer Classification

    No full text
    Internet of Things (IoT) plays an essential role in the area of the healthcare system. IoT devices provide information about patients in the healthcare monitoring framework. Moreover, patients can examine their health with smart devices and hence IoT is a major factor in all aspects of the health care management system. Breast cancer is a deadly cancer in women and the detection of this disease at the primary stage increases the survival rate. Due to the computational complexity associated with acquiring features, classification results generated from the existing methods are unsatisfactory and hence it is important to design a method using deep learning concepts for classifying cancer disease. An efficient and robust classification model named Student Psychology Whale Optimization-based Deep maxout network with optimization (SPWO-based Deep maxout network) classifies breast cancer disease. The advantage of using a Deep maxout network is that it effectively learns intrinsic features from the data. The weight factor of the deep learning model is updated with respect to iteration based on the fitness measure that in turn results in higher results by acquiring a minimal error value. However, the proposed model obtains outstanding accuracy, sensitivity, and specificity in terms of testing with the values of 0.931, 0.953, and 0.915 with 100 nodes

    An IoT-Based Framework and Ensemble Optimized Deep Maxout Network Model for Breast Cancer Classification

    No full text
    Internet of Things (IoT) plays an essential role in the area of the healthcare system. IoT devices provide information about patients in the healthcare monitoring framework. Moreover, patients can examine their health with smart devices and hence IoT is a major factor in all aspects of the health care management system. Breast cancer is a deadly cancer in women and the detection of this disease at the primary stage increases the survival rate. Due to the computational complexity associated with acquiring features, classification results generated from the existing methods are unsatisfactory and hence it is important to design a method using deep learning concepts for classifying cancer disease. An efficient and robust classification model named Student Psychology Whale Optimization-based Deep maxout network with optimization (SPWO-based Deep maxout network) classifies breast cancer disease. The advantage of using a Deep maxout network is that it effectively learns intrinsic features from the data. The weight factor of the deep learning model is updated with respect to iteration based on the fitness measure that in turn results in higher results by acquiring a minimal error value. However, the proposed model obtains outstanding accuracy, sensitivity, and specificity in terms of testing with the values of 0.931, 0.953, and 0.915 with 100 nodes

    A Fast Enhanced Secure Image Chaotic Cryptosystem Based on Hybrid Chaotic Magic Transform

    No full text
    An enhanced secure image chaotic cryptosystem has been proposed based on hybrid CMT-Lanczos algorithm. We have achieved fast encryption and decryption along with privacy of images. The pseudorandom generator has been used along with Lanczos algorithm to generate root characteristics and eigenvectors. Using hybrid CMT image, pixels are shuffled to accomplish excellent randomness. Compared with existing methods, the proposed method had more robustness to various attacks: brute-force attack, known cipher plaintext, chosen-plaintext, security key space, key sensitivity, correlation analysis and information entropy, and differential attacks. Simulation results show that the proposed methods give better result in protecting images with low-time complexity

    Segmentation and Analysis Emphasizing Neonatal MRI Brain Images Using Machine Learning Techniques

    No full text
    MRI scanning has shown significant growth in the detection of brain tumors in the recent decade among various methods such as MRA, X-ray, CT, PET, SPECT, etc. Brain tumor identification requires high exactness because a minor error can be life-threatening. Brain tumor disclosure remains a challenging job in medical image processing. This paper targets to explicate a method that is more precise and accurate in brain tumor detection and focuses on tumors in neonatal brains. The infant brain varies from the adult brain in some aspects, and proper preprocessing technique proves to be fruitful to avoid miscues in results. This paper is divided into two parts: In the first half, preprocessing was accomplished using HE, CLAHE, and BPDFHE enhancement techniques. An analysis is the sequel to the above methods to check for the best method based on performance metrics, i.e., MSE, PSNR, RMSE, and AMBE. The second half deals with the segmentation process. We propose a novel ARKFCM to use for segmentation. Finally, the trends in the performance metrics (dice similarity and Jaccard similarity) as well as the segmentation results are discussed in comparison with the conventional FCM method

    Smart Water Resource Management Using Artificial Intelligence—A Review

    No full text
    Water management is one of the crucial topics discussed in most of the international forums. Water harvesting and recycling are the major requirements to meet the global upcoming demand of the water crisis, which is prevalent. To achieve this, we need more emphasis on water management techniques that are applied across various categories of the applications. Keeping in mind the population density index, there is a dire need to implement intelligent water management mechanisms for effective distribution, conservation and to maintain the water quality standards for various purposes. The prescribed work discusses about few major areas of applications that are required for efficient water management. Those are recent trends in wastewater recycle, water distribution, rainwater harvesting and irrigation management using various Artificial Intelligence (AI) models. The data acquired for these applications are purely unique and also differs by type. Hence, there is a dire need to use a model or algorithm that can be applied to provide solutions across all these applications. Artificial Intelligence (AI) and Deep Learning (DL) techniques along with the Internet of things (IoT) framework can facilitate in designing a smart water management system for sustainable water usage from natural resources. This work surveys various water management techniques and the use of AI/DL along with the IoT network and case studies, sample statistical analysis to develop an efficient water management framework
    corecore