14,039 research outputs found

    The NuMI Beam At FNAL And Its Use For Neutrino Cross Section Measurements

    Get PDF
    The Neutrinos at the Main Injector (NuMI) facility at Fermilab began operations in late 2004. NuMI will deliver an intense v, beam of variable energy (2-20 GeV). Several aspects of the design and results from runs of the MINOS experiment are reviewed. I also discuss technique to measure directly the neutrino flux using a muon flux system at the end of the NuMI line.Physic

    Semiclassical transport in nearly symmetric quantum dots. I. Symmetry breaking in the dot

    Get PDF
    We apply the semiclassical theory of transport to quantum dots with exact and approximate spatial symmetries; left-right mirror symmetry, up-down mirror symmetry, inversion symmetry, or fourfold symmetry. In this work—the first of a pair of articles—we consider (a) perfectly symmetric dots and (b) nearly symmetric dots in which the symmetry is broken by the dot's internal dynamics. The second article addresses symmetry-breaking by displacement of the leads. Using semiclassics, we identify the origin of the symmetry-induced interference effects that contribute to weak localization corrections and universal conductance fluctuations. For perfect spatial symmetry, we recover results previously found using the random-matrix theory conjecture. We then go on to show how the results are affected by asymmetries in the dot, magnetic fields, and decoherence. In particular, the symmetry-asymmetry crossover is found to be described by a universal dependence on an asymmetry parameter gamma_asym. However, the form of this parameter is very different depending on how the dot is deformed away from spatial symmetry. Symmetry-induced interference effects are completely destroyed when the dot's boundary is globally deformed by less than an electron wavelength. In contrast, these effects are only reduced by a finite amount when a part of the dot's boundary smaller than a lead-width is deformed an arbitrarily large distance

    Generating weights for the Weil representation attached to an even order cyclic quadratic module

    Get PDF
    We develop geometric methods to study the generating weights of free modules of vector valued modular forms of half-integral weight, taking values in a complex representation of the metaplectic group. We then compute the generating weights for modular forms taking values in the Weil representation attached to cyclic quadratic modules of order 2p^r, where p is a prime greater than three. We also show that the generating weights approach a simple limiting distribution as p grows, or as r grows and p remains fixed

    Semiclassical transport in nearly symmetric quantum dots II: symmetry-breaking due to asymmetric leads

    Get PDF
    In this work - the second of a pair of articles - we consider transport through spatially symmetric quantum dots with leads whose widths or positions do not obey the spatial symmetry. We use the semiclassical theory of transport to find the symmetry-induced contributions to weak localization corrections and universal conductance fluctuations for dots with left-right, up-down, inversion and four-fold symmetries. We show that all these contributions are suppressed by asymmetric leads, however they remain finite whenever leads intersect with their images under the symmetry operation. For an up-down symmetric dot, this means that the contributions can be finite even if one of the leads is completely asymmetric. We find that the suppression of the contributions to universal conductance fluctuations is the square of the suppression of contributions to weak localization. Finally, we develop a random-matrix theory model which enables us to numerically confirm these results.Comment: (18pages - 9figures) This is the second of a pair of articles (v3 typos corrected - including in equations
    • …
    corecore