7 research outputs found

    Maximising production of prebiotic sugar (Cellobiose) from sago frond

    Get PDF
    Numerous fronds are discarded as waste upon harvesting of sago logs for starch production. Currently, these fronds are left to degrade in sago estates which potentially pose fire hazard in the dry season, concomitantly accommodating various pests that endanger the livelihood of the sago farmers. The objective of this study is to utilize the frond for the production of cellobiose, a non-table sugar known to harbour various prebiotic properties. Enzymatic hydrolysis was performed on treated sago frond fibre utilizing the cellulolytic enzyme Celluclast 1.5L. Characterization of the lignocellulosic component revealed that adolescent sago fronds have the highest cellulose content (41.43%) which is beneficial for high yield of cellobiose. Pruned sago fronds have the highest lignin (40.63%) which hinders the hydrolysis process. Nevertheless the hemicellulose content was found to be approximately similar (between 15 to18%) which promotes the production of cellobiose. Optimum enzymatic hydrolysis was achieved at 6% (w/v) sago frond powder coupled with 10% (v/v) enzyme and incubated for 48 hours, producing a maximum recovery of cellobiose at 25.5%

    Bio-energy generation in an affordable, single-chamber microbial fuel cell integrated with adsorption hybrid system: effects of temperature and comparison study

    Get PDF
    A microbial fuel cell (MFC) integrated with adsorption system (MFC-AHS) is tested under various operating temperatures with palm oil mill effluent as the substrate. The optimum operating temperature for such system is found to be at ∼35°C with current, power density, internal resistance (Rin), Coulombic efficiency (CE) and maximum chemical oxygen demand (COD) removal of 2.51 ± 0.2 mA, 74 ± 6 mW m−3, 25.4 Ω, 10.65 ± 0.5% and 93.57 ± 1.2%, respectively. Maximum current density increases linearly with temperature at a rate of 0.1772 mA m−2 °C−1, whereas maximum power density was in a polynomial function. The temperature coefficient (Q10) is found to be 1.20 between 15°C and 35°C. Present studies have demonstrated better CE performance when compared to other MFC-AHSs. Generally, MFC-AHS has demonstrated higher COD removals when compared to standalone MFC regardless of operating temperatures. Abbreviations: ACFF: activated carbon fiber felt; APHA: American Public Health Association; CE: Coulombic efficiency; COD: chemical oxygen demand; ECG: electrocardiogram; GAC: granular activated carbon; GFB: graphite fiber brush; MFC: microbial fuel cell; MFC-AHS: microbial fuel cell integrated with adsorption hybrid system; MFC-GG: microbial fuel cell integrated with graphite granules; POME: palm oil mill effluent; PTFE: polytetrafluoroethylene; SEM: scanning electron microscope. © 2017 Informa UK Limited, trading as Taylor & Francis Group

    Effects of temperature on wastewater treatment in an affordable microbial fuel cell-adsorption hybrid system

    Get PDF
    Graphical abstract: A cost effective single-chamber microbial fuel cell (MFC) integrated with adsorption system was tested under different operating temperatures to observe pH profiles, organics, solids, nutrients, color and turbidity removal and power density generation. The optimum operating temperature range was found to be ∼25-35°C with majority of the removals achieved at ∼35°C. Maximum power density recorded was 74±6mW/m3 with coulombic efficiency (CE) of 10.65±0.5% when operated at 35°C. Present studies had successfully demonstrated the effectiveness of a hybrid system in removing various types of pollutants in POME at optimum temperature and able to fulfill the stringent effluent discharge limit. Chemical oxygen demand (COD), total solids (TS) and turbidity removals increase linearly with temperatures with removal efficiency of 0.5889%C−1, 1.0754%C−1 and 0.7761%C−1, respectively. The temperature coefficient (Q10) is found to be 1.06, 1.45 and 1.09, respectively. Besides, MFC-adsorption hybrid system had demonstrated superior stability over a wide range of operating temperatures in terms of COD removal as compared to the non-integrated MFC system

    Preliminary Production of Material Compound from Sago Waste

    Get PDF
    Sago palm or its scientific name, Metroxylon sago Rottb is commonly found in tropical low forests and processed into sago flour. Processing of sago flour will produce sago waste (SW).This excess waste has been found to cause ecosystem imbalance. The research looks into the preliminary process of recycling the sago waste into a new material compound that can be used by any modeler as a substitute in the production of any products that are compatible with the material. The process goes through the filtering stage, drying stage and molding stage using only natural resources as the main ingredients with different level of contents tested. The compound is also tested for its durability as a modeler material. The research shares the results from the process, the end product that can be used for model making and a sample of a product that is produced from the material compound
    corecore