7 research outputs found
Recommended from our members
An integrated clinical program and crowdsourcing strategy for genomic sequencing and Mendelian disease gene discovery.
Despite major progress in defining the genetic basis of Mendelian disorders, the molecular etiology of many cases remains unknown. Patients with these undiagnosed disorders often have complex presentations and require treatment by multiple health care specialists. Here, we describe an integrated clinical diagnostic and research program using whole-exome and whole-genome sequencing (WES/WGS) for Mendelian disease gene discovery. This program employs specific case ascertainment parameters, a WES/WGS computational analysis pipeline that is optimized for Mendelian disease gene discovery with variant callers tuned to specific inheritance modes, an interdisciplinary crowdsourcing strategy for genomic sequence analysis, matchmaking for additional cases, and integration of the findings regarding gene causality with the clinical management plan. The interdisciplinary gene discovery team includes clinical, computational, and experimental biomedical specialists who interact to identify the genetic etiology of the disease, and when so warranted, to devise improved or novel treatments for affected patients. This program effectively integrates the clinical and research missions of an academic medical center and affords both diagnostic and therapeutic options for patients suffering from genetic disease. It may therefore be germane to other academic medical institutions engaged in implementing genomic medicine programs
High-throughput mapping of regulatory DNA
Quantifying the effects of cis-regulatory DNA on gene expression is a major challenge. Here, we present the multiplexed editing regulatory assay (MERA), a high-throughput CRISPR-Cas9âbased approach that analyzes the functional impact of the regulatory genome in its native context. MERA tiles thousands of mutations across ~40 kb of cis-regulatory genomic space and uses knock-in green fluorescent protein (GFP) reporters to read out gene activity. Using this approach, we obtain quantitative information on the contribution of cis-regulatory regions to gene expression. We identify proximal and distal regulatory elements necessary for expression of four embryonic stem cellâspecific genes. We show a consistent contribution of neighboring gene promoters to gene expression and identify unmarked regulatory elements (UREs) that control gene expression but do not have typical enhancer epigenetic or chromatin features. We compare thousands of functional and nonfunctional genotypes at a genomic location and identify the base pairâresolution functional motifs of regulatory elements.National Institutes of Health (U.S.) (1U01HG007037
Whole tumor cell vaccines engineered to secrete GMâCSF (GVAX)
Abstract Generation of immunity against cancer through vaccination has long been an elusive goal for tumor immunologists. Putative candidates for vaccination targets include oncofetal antigens, viral antigens, neoantigens, and differentiation antigens. The first attempts at cancer vaccination used injections of whole autologous tumor cells. However, these unmodified tumor cells did not engender a robust immune response. Subsequent efforts were focused at enhancing the immunogenicity of whole autologous tumor cell vaccines through genetic modification, often through virally mediated transduction of genes encoding immunostimulatory molecules. Of many immunostimulatory cytokines evaluated in the context of geneâmodified tumor cell vaccines, granulocyteâmacrophage colonyâstimulating factor (GMâCSF) emerged as the most potent in generating protective antitumor immunity. Vaccination using irradiated, GMâCSF producing tumor cells (GVAX) consistently induced antitumor immunity across several experimental tumor models. The term GVAX can connote GMâCSF secreting cell vaccines prepared with different vectors as well as vector targets including autologous tumor cells, allogeneic tumor cell lines, and bystander third party tumor cells lines. GVAX has been evaluated against solid tumors, hematologic malignancies, and in the context of hematopoietic stem cell transplantation. GVAX has been extensively studied in clinical trials, both alone and in conjunction with lymphodepleting chemotherapy, immune checkpoint inhibitors, and other vaccines
Recommended from our members
An integrated clinical program and crowdsourcing strategy for genomic sequencing and Mendelian disease gene discovery.
Despite major progress in defining the genetic basis of Mendelian disorders, the molecular etiology of many cases remains unknown. Patients with these undiagnosed disorders often have complex presentations and require treatment by multiple health care specialists. Here, we describe an integrated clinical diagnostic and research program using whole-exome and whole-genome sequencing (WES/WGS) for Mendelian disease gene discovery. This program employs specific case ascertainment parameters, a WES/WGS computational analysis pipeline that is optimized for Mendelian disease gene discovery with variant callers tuned to specific inheritance modes, an interdisciplinary crowdsourcing strategy for genomic sequence analysis, matchmaking for additional cases, and integration of the findings regarding gene causality with the clinical management plan. The interdisciplinary gene discovery team includes clinical, computational, and experimental biomedical specialists who interact to identify the genetic etiology of the disease, and when so warranted, to devise improved or novel treatments for affected patients. This program effectively integrates the clinical and research missions of an academic medical center and affords both diagnostic and therapeutic options for patients suffering from genetic disease. It may therefore be germane to other academic medical institutions engaged in implementing genomic medicine programs