15 research outputs found

    Switching to Immune Checkpoint Inhibitors upon Response to Targeted Therapy; The Road to Long-Term Survival in Advanced Melanoma Patients with Highly Elevated Serum LDH?

    No full text
    The prognosis of patients with advanced melanoma has improved dramatically. However, the clinical outcomes of patients with highly elevated serum lactate dehydrogenase (LDH) remain very poor. The aim of this study was to explore whether patients with normalized LDH after targeted therapy could benefit from subsequent treatment with immune checkpoint inhibitors (ICI). Data from all patients with BRAF-mutant metastatic melanoma with a highly elevated serum LDH at baseline (>= 2x upper limit of normal) receiving first-line targeted therapy between 2012 and 2019 in the Netherlands were collected. Patients were stratified according to response status to targeted therapy and change in LDH at start of subsequent treatment with ICI. Differences in overall survival (OS) between the subgroups were compared using log-rank tests. After a median follow-up of 35.1 months, median OS of the total study population (n = 360) was 4.9 months (95% CI 4.4-5.4). Of all patients receiving subsequent treatment with ICI (n = 113), survival from start of subsequent treatment was significantly longer in patients who had normalized LDH and were still responding to targeted therapy compared to those with LDH that remained elevated (median OS 24.7 vs. 1.1 months). Our study suggests that introducing ICI upon response to targeted therapy with normalization of LDH could be an effective strategy in obtaining long-term survival in advanced melanoma patients with initial highly elevated serum LDH

    CYP2C19*2 predicts substantial tamoxifen benefit in postmenopausal breast cancer patients randomized between adjuvant tamoxifen and no systemic treatment

    Get PDF
    Item does not contain fulltextEstrogen catabolism is a major function of CYP2C19. The effect of CYP2C19 polymorphisms on tamoxifen sensitivity may therefore not only be mediated by a variation in tamoxifen metabolite levels but also by an effect on breast cancer risk and molecular subtype due to variation in lifelong exposure to estrogens. We determined the association between these polymorphisms and tamoxifen sensitivity in the context of a randomized trial, which allows for the discernment of prognosis from prediction. We isolated primary tumor DNA from 535 estrogen receptor-positive, stages I-III, postmenopausal breast cancer patients who had been randomized to tamoxifen (1-3 years) or no adjuvant therapy. Recurrence-free interval improvement with tamoxifen versus control was assessed according to the presence or absence of CYP2C19*2 and CYP2C19*17. Hazard ratios and interaction terms were calculated using multivariate Cox proportional hazard models, stratified for nodal status. Tamoxifen benefit was not significantly affected by CYP2C19*17. Patients with at least one CYP2C19*2 allele derived significantly more benefit from tamoxifen (HR 0.26; p = 0.001) than patients without a CYP2C19*2 allele (HR 0.68; p = 0.18) (p for interaction 0.04). In control patients, CYP2C19*2 was an adverse prognostic factor. In conclusion, breast cancer patients carrying at least one CYP2C19*2 allele have an adverse prognosis in the absence of adjuvant systemic treatment, which can be substantially improved by adjuvant tamoxifen treatment
    corecore