51 research outputs found

    Dynein structure and power stroke

    Get PDF
    Dynein ATPases are microtubule motors that are critical to diverse processes such as vesicle transport and the beating of sperm tails; however, their mechanism of force generation is unknown. Each dynein comprises a head, from which a stalk and a stem emerge. Here we use electron microscopy and image processing to reveal new structural details of dynein c, an isoform from Chlamydomonas reinhardtii flagella, at the start and end of its power stroke. Both stem and stalk are flexible, and the stem connects to the head by means of a linker approximately 10 nm long that we propose lies across the head. With both ADP and vanadate bound, the stem and stalk emerge from the head 10 nm apart. However, without nucleotide they emerge much closer together owing to a change in linker orientation, and the coiled-coil stalk becomes stiffer. The net result is a shortening of the molecule coupled to an approximately 15-nm displacement of the tip of the stalk. These changes indicate a mechanism for the dynein power stroke

    Expression and genomic analysis of midasin, a novel and highly conserved AAA protein distantly related to dynein

    Get PDF
    BACKGROUND: The largest open reading frame in the Saccharomyces genome encodes midasin (MDN1p, YLR106p), an AAA ATPase of 560 kDa that is essential for cell viability. Orthologs of midasin have been identified in the genome projects for Drosophila, Arabidopsis, and Schizosaccharomyces pombe. RESULTS: Midasin is present as a single-copy gene encoding a well-conserved protein of ~600 kDa in all eukaryotes for which data are available. In humans, the gene maps to 6q15 and encodes a predicted protein of 5596 residues (632 kDa). Sequence alignments of midasin from humans, yeast, Giardia and Encephalitozoon indicate that its domain structure comprises an N-terminal domain (35 kDa), followed by an AAA domain containing six tandem AAA protomers (~30 kDa each), a linker domain (260 kDa), an acidic domain (~70 kDa) containing 35–40% aspartate and glutamate, and a carboxy-terminal M-domain (30 kDa) that possesses MIDAS sequence motifs and is homologous to the I-domain of integrins. Expression of hemagglutamin-tagged midasin in yeast demonstrates a polypeptide of the anticipated size that is localized principally in the nucleus. CONCLUSIONS: The highly conserved structure of midasin in eukaryotes, taken in conjunction with its nuclear localization in yeast, suggests that midasin may function as a nuclear chaperone and be involved in the assembly/disassembly of macromolecular complexes in the nucleus. The AAA domain of midasin is evolutionarily related to that of dynein, but it appears to lack a microtubule-binding site

    Dynein-Dynactin Complex Is Essential for Dendritic Restriction of TM1-Containing Drosophila Dscam

    Get PDF
    BACKGROUND: Many membrane proteins, including Drosophila Dscam, are enriched in dendrites or axons within neurons. However, little is known about how the differential distribution is established and maintained. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the mechanisms underlying the dendritic targeting of Dscam[TM1]. Through forward genetic mosaic screens and by silencing specific genes via targeted RNAi, we found that several genes, encoding various components of the dynein-dynactin complex, are required for restricting Dscam[TM1] to the mushroom body dendrites. In contrast, compromising dynein/dynactin function did not affect dendritic targeting of two other dendritic markers, Nod and Rdl. Tracing newly synthesized Dscam[TM1] further revealed that compromising dynein/dynactin function did not affect the initial dendritic targeting of Dscam[TM1], but disrupted the maintenance of its restriction to dendrites. CONCLUSIONS/SIGNIFICANCE: The results of this study suggest multiple mechanisms of dendritic protein targeting. Notably, dynein-dynactin plays a role in excluding dendritic Dscam, but not Rdl, from axons by retrograde transport

    C-terminal Tail of β-Tubulin and its Role in the Alterations of Dynein Binding Mode

    Get PDF
    Dynein is a cytoskeletal molecular motor protein that moves along the microtubule (MT) and transports various cellular cargos during its movement. Using standard Molecular Dynamics (MD) simulation, Principle Component Analysis (PCA), and Normal Mode Analysis (NMA) methods, this investigation studied large-scale movements and local interactions of dynein’s Microtubule Binding Domain (MTBD) when bound to tubulin heterodimer subunits. Examination of the interactions between the MTBD segments, and their adjustments in terms of intra- and intermolecular distances at the interfacial area with tubulin heterodimer, particularly at α-H16, β-H18 and β-tubulin C-terminal tail (CTT), was the main focus of this study. The specific intramolecular interactions, electrostatic forces and the salt-bridge residue pairs were shown to be the dominating factors in orchestrating movements of the MTBD and MT interfacial segments in the dynein’s low-high affinity binding modes. Important interactions included β-Glu447 and β-Glu449 (CTT) with Arg3469 (MTBD-H6), Lys3472 (MTBD-H6-H7 loop) and Lys3479 (MTBD-H7); β-Glu449 with Lys3384 (MTBD-H8), Lys3386 and His3387 (MTBD-H1). The structural and precise position, orientation, and functional effects of the CTTs on the MT-MTBD, within reasonable cut-off distance for non-bonding interactions and under physiological conditions, are unavailable from the previous studies. The absence of the residues in the highly flexible MT-CTTs in the experimentally solved structures is perhaps in some cases due to insufficient data from density maps, but these segments are crucial in protein binding. The presented work contributes to the information useful for the MT-MTBD structure refinement

    Dynein and kinesin share an overlapping microtubule-binding site

    No full text
    Dyneins and kinesins move in opposite directions on microtubules. The question of how the same-track microtubules are able to support movement in two directions remains unanswered due to the absence of details on dynein–microtubule interactions. To address this issue, we studied dynein–microtubule interactions using the tip of the microtubule-binding stalk, the dynein stalk head (DSH), which directly interacts with microtubules upon receiving conformational change from the ATPase domain. Biochemical and cryo-electron microscopic studies revealed that DSH bound to tubulin dimers with a periodicity of 80 Å, corresponding to the step size of dyneins. The DSH molecule was observed as a globular corn grain-like shape that bound the same region as kinesin. Biochemical crosslinking experiments and image analyses of the DSH–kinesin head–microtubule complex revealed competition between DSH and the kinesin head for microtubule binding. Our results demonstrate that dynein and kinesin share an overlapping microtubule-binding site, and imply that binding at this site has an essential role for these motor proteins
    • …
    corecore