5 research outputs found
A continuum model accounting for the effect of the initial and evolving microstructure on the evolution of dynamic recrystallization
Laser assisted forming is a process which is increasingly being adopted by the industry. Application of heat by a laser to austenitic stainless steel (ASS) sheet provides local control over formability and strength of the material. The hot forming behavior of ASS is characterized by significant dynamic recovery and dynamic recrystallization. These two processes lead to a softening stress-strain response and have a significant impact on the microstructure of the material. Most of the research performed on hot forming of ASS focuses on dynamic recrystallization and then specifically on the behavior of the annealed state, consisting of relatively large equiaxed austenite grains. However, in industry it is common to use cold rolled ASS sheet which is a mixture of austenite and martensite. Application of a laser heat treatment to the cold rolled grades of ASS induces a socalled ‘reverse’ transformation of martensite to austenite which, depending on the exact time-temperature combinations, leads to an austenite grain size in the range of nanoto micrometer. It is known from experiments that the effect of initial grain size on dynamic recrystallization is significant, especially on the initial stages of recrystallization. Therefore any continuum model capable of describing hot forming of cold rolled ASS should include the effect of the initial grain size. In this work a physically based continuum model for dynamic recrystallization is presented which accounts for the effect of the initial and evolving grain size on the evolution of dynamic recrystallization. It is shown that the initial grain size can be accounted for by incorporating its effect on the availability of preferred nucleation sites, i.e. grain edges. The new model is compared to experimental results and it is shown that the model correctly predicts accelerated recrystallization with decrease in grain size and that there is a weak dependence of the dynamically recrystallized grain size on the initial grain size. Furthermore predicted recrystallized grain sizes are in good agreement with the experimentally measured values
The evolution of mechanical properties of AISI 301 as a result of phase reversion heat treatment, experiment and modeling
Laser heat treatments of metastable austenitic stainless steel AISI 301 are presented aiming to elucidate the relation between heat treatment, transformation and mechanical properties after heat treatment. It is assumed that the observed phase reversion of martensite to austenite is due to a diffusional transformation mechanism governed by nucleation and growth leading to submicron grains. Based on this assumption it is demonstrated that the reverse transformation can be successfully predicted by the proposed model. Subsequently the effect of the heat treatment on the hardness is reviewed. It is shown that the proposed hardness-model, in combination with the proposed isothermal transformation model, is in agreement with the observed behavior. Amongst others it is successfully predicted that the isothermal transformation precedes the recrystallization of the retained austenite and that the post-heat treatment grain size has a large effect on the behavior through the Hall-Petch effect
A continuum model accounting for the effect of the initial and evolving microstructure on the evolution of dynamic recrystallization
Laser assisted forming is a process which is increasingly being adopted by the industry. Application of heat by a laser to austenitic stainless steel (ASS) sheet provides local control over formability and strength of the material. The hot forming behavior of ASS is characterized by significant dynamic recovery and dynamic recrystallization. These two processes lead to a softening stress-strain response and have a significant impact on the microstructure of the material. Most of the research performed on hot forming of ASS focuses on dynamic recrystallization and then specifically on the behavior of the annealed state, consisting of relatively large equiaxed austenite grains. However, in industry it is common to use cold rolled ASS sheet which is a mixture of austenite and martensite. Application of a laser heat treatment to the cold rolled grades of ASS induces a socalled ‘reverse’ transformation of martensite to austenite which, depending on the exact time-temperature combinations, leads to an austenite grain size in the range of nanoto micrometer. It is known from experiments that the effect of initial grain size on dynamic recrystallization is significant, especially on the initial stages of recrystallization. Therefore any continuum model capable of describing hot forming of cold rolled ASS should include the effect of the initial grain size. In this work a physically based continuum model for dynamic recrystallization is presented which accounts for the effect of the initial and evolving grain size on the evolution of dynamic recrystallization. It is shown that the initial grain size can be accounted for by incorporating its effect on the availability of preferred nucleation sites, i.e. grain edges. The new model is compared to experimental results and it is shown that the model correctly predicts accelerated recrystallization with decrease in grain size and that there is a weak dependence of the dynamically recrystallized grain size on the initial grain size. Furthermore predicted recrystallized grain sizes are in good agreement with the experimentally measured values
In-situ investigation of strain-induced martensitic transformation kinetics in an austenitic stainless steel by inductive measurements
An inductive sensor developed by Philips ATC has been used to study in-situ the austenite (γ) to martensite (α′) phase transformation kinetics during tensile testing in an AISI 301 austenitic stainless steel. A correlation between the sensor output signal and the volume fraction of α′-martensite has been found by comparing the results to the ex-situ characterization by magnetization measurements, light optical microscopy, and X-ray diffraction. The sensor has allowed for the observation of the stepwise transformation behavior, a not-well-understood phenomena that takes place in large regions of the bulk material and that so far had only been observed by synchrotron X-ray diffraction.(OLD) MSE-