48 research outputs found

    Developmental variations in plasma leptin, leptin soluble receptor and their molar ratio in healthy infants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leptin and its soluble receptor (sOB-R) are important to regulation of body composition but there are no data on the developmental variations in these plasma variables and their relationship with body composition measurements,</p> <p>Methods</p> <p>Weight, length, and body composition (bone, fat and lean mass) by dual energy absorptiometry, and plasma variables were measured in healthy infants at 2, 4, 8 and 12 months.</p> <p>Results</p> <p>15 whites and 29 African Americans (21 males and 23 females) with mean birth weight 3357 +/- 45 (SEM) g and gestation of 39.3 +/- 0.17 weeks were studied. The overall Z score for weight, length and weight for length during the study were 0.00 +/- 0.15, -0.08 +/- 0.11 and 0.12 +/- 0.14 respectively. With increasing age, plasma leptin (1.0 to 18.2, median 5.5 ng/mL) and sOB-R:leptin molar ratio (10.1 to 247.4, median 59.9) were lowered (r = -0.47, p < 0.01; and r = -0.37, p < 0.05 respectively), best predicted by weight Z score and percentage of fat mass, and higher in African American and female. Presence of body composition measurements eliminated the race and gender effect on the plasma variables. Plasma sOB-R (49.5 to 173.9, median 81.3 ng/mL) did not change significantly with age and was correlated and predicted only by body composition measurements.</p> <p>Conclusion</p> <p>In healthy growing infants, plasma leptin but not sOB-R decreases with age. Gender, race and anthropometric measurements are additional physiological determinants predictive of plasma leptin and the receptor:ligand ratio. However, body composition is the only variable that can predict plasma leptin and its soluble receptor and the receptor: ligand ratio; and body composition measurements eliminated the race and gender effect on these plasma variables.</p

    Fetal and Early Post-Natal Mineralization of the Tympanic Bulla in Fin Whales May Reveal a Hitherto Undiscovered Evolutionary Trait

    Get PDF
    The evolution of the cetacean skeleton followed a path that differentiated this group from other terrestrial mammals about 50 million years ago [1], and debate is still going on about the relationships between Cetacea and Artiodactyla [2], [3], [4]. Some skeletal traits of the basilosaurids (the more advanced forms of Archaeocetes), such as the expansion of the peribullary air sinuses, dental modification and vertebral size uniformity [5] are maintained and further emphasized also in contemporary odontocetes and mysticetes. Using Dual-Energy X-Ray Absorptiometry here we report that the deposition of bone mineral in fetal and newborn specimens of the fin whale Balaenoptera physalus is remarkably higher in the bulla tympanica than in the adjacent basal skull or in the rest of the skeleton. Ossification of the tympanic bulla in fetal Artiodactyla (bovine, hippopotamus) is minimal, becomes sensible after birth and then progresses during growth, contrarily to the precocious mineralization that we observed in fin whales. Given the importance of the ear bones for the precise identification of phylogenetic relationship in therian evolution [6], this feature may indicate a specific evolutionary trait of fin whales and possibly other cetacean species or families. Early mineralization of the tympanic bulla allows immediate sound conduction in the aquatic medium and consequently holds potential importance for mother-calf relationship and postnatal survival

    Pediatric DXA: technique and interpretation

    Get PDF
    This article reviews dual X-ray absorptiometry (DXA) technique and interpretation with emphasis on the considerations unique to pediatrics. Specifically, the use of DXA in children requires the radiologist to be a “clinical pathologist” monitoring the technical aspects of the DXA acquisition, a “statistician” knowledgeable in the concepts of Z-scores and least significant changes, and a “bone specialist” providing the referring clinician a meaningful context for the numeric result generated by DXA. The patient factors that most significantly influence bone mineral density are discussed and are reviewed with respect to available normative databases. The effects the growing skeleton has on the DXA result are also presented. Most important, the need for the radiologist to be actively involved in the technical and interpretive aspects of DXA is stressed. Finally, the diagnosis of osteoporosis should not be made on DXA results alone but should take into account other patient factors

    Anthropometry‐based prediction of body composition in early infancy compared to air‐displacement plethysmography

    Get PDF
    Funder: Danone Nutricia ResearchFunder: EU Commission for JPI HDHL program ‘Call III Biomarkers’ for project: BioFN ‐ Biomarkers for Infant Fat Mass Development and Nutrition; Grant(s): 696295Summary: Background: Anthropometry‐based equations are commonly used to estimate infant body composition. However, existing equations were designed for newborns or adolescents. We aimed to (a) derive new prediction equations in infancy against air‐displacement plethysmography (ADP‐PEA Pod) as the criterion, (b) validate the newly developed equations in an independent infant cohort and (c) compare them with published equations (Slaughter‐1988, Aris‐2013, Catalano‐1995). Methods: Cambridge Baby Growth Study (CBGS), UK, had anthropometry data at 6 weeks (N = 55) and 3 months (N = 64), including skinfold thicknesses (SFT) at four sites (triceps, subscapular, quadriceps and flank) and ADP‐derived total body fat mass (FM) and fat‐free mass (FFM). Prediction equations for FM and FFM were developed in CBGS using linear regression models and were validated in Sophia Pluto cohort, the Netherlands, (N = 571 and N = 447 aged 3 and 6 months, respectively) using Bland–Altman analyses to assess bias and 95% limits of agreement (LOA). Results: CBGS equations consisted of sex, age, weight, length and SFT from three sites and explained 65% of the variance in FM and 79% in FFM. In Sophia Pluto, these equations showed smaller mean bias than the three published equations in estimating FM: mean bias (LOA) 0.008 (−0.489, 0.505) kg at 3 months and 0.084 (−0.545, 0.713) kg at 6 months. Mean bias in estimating FFM was 0.099 (−0.394, 0.592) kg at 3 months and −0.021 (−0.663, 0.621) kg at 6 months. Conclusions: CBGS prediction equations for infant FM and FFM showed better validity in an independent cohort at ages 3 and 6 months than existing equations

    Micronutrient fortification of food and its impact on woman and child health: A systematic review

    Get PDF
    Background: Vitamins and minerals are essential for growth and metabolism. The World Health Organization estimates that more than 2 billion people are deficient in key vitamins and minerals. Groups most vulnerable to these micronutrient deficiencies are pregnant and lactating women and young children, given their increased demands. Food fortification is one of the strategies that has been used safely and effectively to prevent vitamin and mineral deficiencies.Methods: A comprehensive search was done to identify all available evidence for the impact of fortification interventions. Studies were included if food was fortified with a single, dual or multiple micronutrients and impact of fortification was analyzed on the health outcomes and relevant biochemical indicators of women and children. We performed a meta-analysis of outcomes using Review Manager Software version 5.1.Results: Our systematic review identified 201 studies that we reviewed for outcomes of relevance. Fortification for children showed significant impacts on increasing serum micronutrient concentrations. Hematologic markers also improved, including hemoglobin concentrations, which showed a significant rise when food was fortified with vitamin A, iron and multiple micronutrients. Fortification with zinc had no significant adverse impact on hemoglobin levels. Multiple micronutrient fortification showed non-significant impacts on height for age, weight for age and weight for height Z-scores, although they showed positive trends. The results for fortification in women showed that calcium and vitamin D fortification had significant impacts in the post-menopausal age group. Iron fortification led to a significant increase in serum ferritin and hemoglobin levels in women of reproductive age and pregnant women. Folate fortification significantly reduced the incidence of congenital abnormalities like neural tube defects without increasing the incidence of twinning. The number of studies pooled for zinc and multiple micronutrients for women were few, though the evidence suggested benefit. There was a dearth of evidence for the impact of fortification strategies on morbidity and mortality outcomes in women and children.Conclusion: Fortification is potentially an effective strategy but evidence from the developing world is scarce. Programs need to assess the direct impact of fortification on morbidity and mortality

    Aluminum toxicity in childhood

    Full text link
    Aluminum intoxication is an iatrogenic disease caused by the use of aluminum compounds for phosphate binding and by the contamination of parenteral fluids. Although organ aluminum deposition was noted as early as 1880 and toxicity was documented in the 1960s, the inability to accurately measure serum and tissue aluminum prevented delineation of its toxic effects until the 1970s. Aluminum toxicity has now been conclusively shown to cause encephalopathy, metabolic bone disease, and microcytic anemia.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47831/1/467_2004_Article_BF00869743.pd
    corecore