61 research outputs found

    Gene expression profiling of oxidative stress response of C. elegans aging defective AMPK mutants using massively parallel transcriptome sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A strong association between stress resistance and longevity in multicellular organisms has been established as many mutations that extend lifespan also show increased resistance to stress. AAK-2, the <it>C. elegans </it>homolog of an alpha subunit of AMP-activated protein kinase (AMPK) is an intracellular fuel sensor that regulates cellular energy homeostasis and functions in stress resistance and lifespan extension.</p> <p>Findings</p> <p>Here, we investigated global transcriptional responses of <it>aak-2 </it>mutants to oxidative stress and in turn identified potential downstream targets of AAK-2 involved in stress resistance in <it>C. elegans</it>. We employed massively parallel Illumina sequencing technology and performed comprehensive comparative transcriptome analysis. Specifically, we compared the transcriptomes of <it>aak-2 </it>and wild type animals under normal conditions and conditions of induced oxidative stress. This research has presented a snapshot of genome-wide transcriptional activities that take place in <it>C. elegans </it>in response to oxidative stress both in the presence and absence of AAK-2.</p> <p>Conclusions</p> <p>The analysis presented in this study has enabled us to identify potential genes involved in stress resistance that may be either directly or indirectly under the control of AAK-2. Furthermore, we have extended our current knowledge of general defense responses of <it>C. elegans </it>against oxidative stress supporting the function for AAK-2 in inhibition of biosynthetic processes, especially lipid synthesis, under oxidative stress and transcriptional regulation of genes involved in reproductive processes.</p

    Enzymatic properties of the Caenorhabditis elegans Dna2 endonuclease/helicase and a species-specific interaction between RPA and Dna2

    Get PDF
    In both budding and fission yeasts, a null mutation of the DNA2 gene is lethal. In contrast, a null mutation of Caenorhabditis elegans dna2(+) causes a delayed lethality, allowing survival of some mutant C.elegans adults to F2 generation. In order to understand reasons for this difference in requirement of Dna2 between these organisms, we examined the enzymatic properties of the recombinant C.elegans Dna2 (CeDna2) and its interaction with replication-protein A (RPA) from various sources. Like budding yeast Dna2, CeDna2 possesses DNA-dependent ATPase, helicase and endonuclease activities. The specific activities of both ATPase and endonuclease activities of the CeDna2 were considerably higher than the yeast Dna2 (∼10- and 20-fold, respectively). CeDna2 endonuclease efficiently degraded a short 5′ single-stranded DNA tail (<10 nt) that was hardly cleaved by ScDna2. Both endonuclease and helicase activities of CeDna2 were stimulated by CeRPA, but not by human or yeast RPA, demonstrating a species-specific interaction between Dna2 and RPA. These and other enzymatic properties of CeDna2 described in this paper may shed light on the observation that C.elegans is less stringently dependent on Dna2 for its viability than Saccharomyces cerevisiae. We propose that flaps generated by DNA polymerase δ-mediated displacement DNA synthesis are mostly short in C.elegans eukaryotes, and hence less dependent on Dna2 for viability

    The 53BP1 homolog in C. elegans influences DNA repair and promotes apoptosis in response to ionizing radiation.

    Get PDF
    53BP1 contributes to activation of the G2/M checkpoint downstream of ATM and MDC1 in response to ionizing radiation and promotes nonhomologous end-joining (NHEJ) in mammalian cells. In order to determine whether the cellular activities of 53BP1 are conserved in the model organism C. elegans, we analyzed the function of its homolog, HSR-9 in response to DNA damage. Deletion or Mos1-insertion in hsr-9 did not affect the sensitivity of worms to double strand DNA breaks (DSBs), as reflected in embryonic survival and larval development. Nevertheless, the hsr-9 mutations, as well as a lig-4 deletion, reversed the hypersensitivity of rad-54-deficient worms to DSBs. In addition, oocyte chromosomal aberrations, which were increased by rad-54 knockdown in response to DSBs, were also reduced by the hsr-9 mutations. The hsr-9 mutations did not prevent the cell cycle arrest induced by DSBs in mitotically proliferating germ cells. However, they attenuated apoptosis induced by DSBs, but not when CEP-1 (a p53 ortholog) was absent, suggesting that HSR-9 functions in the same pathway as CEP-1. We concluded that the 53BP1 homolog in C. elegans is not directly involved in cell cycle arrest in response to DSBs, but that it promotes apoptosis and also a form of NHEJ that occurs only when rad-54 is deficient

    Transcriptional profiling of thymidine-producing strain recombineered from Escherichia coli BL21

    Get PDF
    DNA microarrays were used to compare the expression profiles of a thymidine overproducing strain (BLT013) and its isogenic parent, Escherichia coli BL21(DE3), when each was grown under well-defined thymidine production conditions with glycerol as carbon source. Here we describe the experimental procedures and methods in detail to reproduce the results and provide resource to be applied to similar engineering approach (available at Gene Expression Omnibus database under GSE69963). Taken together, the microarray data provide a basis for new testable hypotheses regarding enhancement of thymidine productivity and attaining a more complete understanding of nucleotide metabolism in bacteria

    Identification of a DNA supercoiling activity in Saccharomyces cerevisiae

    No full text

    The Development and Validation of a Novel “Dual Cocktail” Probe for Cytochrome P450s and Transporter Functions to Evaluate Pharmacokinetic Drug-Drug and Herb-Drug Interactions

    No full text
    This study was designed to develop and validate a 10 probe drug cocktail named &ldquo;Dual Cocktail&rdquo;, composed of caffeine (Cyp1a2 in rat and CYP1A2 in human, 1 mg/kg), diclofenac (Cyp2c11 in rat and CYP2C9 in human, 2 mg/kg), omeprazole (Cyp2c11 in rat and CYP2C19 in human, 2 mg/kg), dextromethorphan (Cyp2d2 in rat and CYP2D6 in human, 10 mg/kg), nifedipine (Cyp3a1 in rat and CYP3A4 in human, 0.5 mg/kg), metformin (Oct1/2 in rat and OCT1/2 in human, 0.5 mg/kg), furosemide (Oat1/3 in rat and OAT1/3 in human, 0.1 mg/kg), valsartan (Oatp2 in rat and OATP1B1/1B3 in human, 0.2 mg/kg), digoxin (P-gp in rat and human, 2 mg/kg), and methotrexate (Mrp2 in rat and MRP2 in human, 0.5 mg/kg), for the evaluation of pharmacokinetic drug&ndash;drug and herb-drug interactions through the modulation of a representative panel of CYP enzymes or transporters in rats. To ensure no interaction among the ten probe substrates, we developed a 2-step evaluation protocol. In the first step, the pharmacokinetic properties of five individual CYP probe substrates and five individual transporter substrates were compared with the pharmacokinetics of five CYP cocktail or five transporters cocktails in two groups of randomly assigned rats. Next, a pharmacokinetic comparison was conducted between the CYP or transporter cocktail group and the dual cocktail group, respectively. None of the ten comparison groups was found to be statistically significant, indicating the CYP and transporter substrate sets or dual cocktail set could be concomitantly administered in rats. The &ldquo;Dual Cocktail&rdquo; was further validated by assessing the metabolism of nifedipine and omeprazole, which was significantly reduced by a single oral dose of ketoconazole (10 mg/kg); however, no changes were observed in the pharmacokinetic parameters of other probe substrates. Additionally, multiple oral doses of rifampin (20 mg/kg) reduced the plasma concentrations of nifedipine and digoxin, although not any of the other substrates. In conclusion, the dual cocktail can be used to characterize potential pharmacokinetic drug&ndash;drug interactions by simultaneously monitoring the activity of multiple CYP isoforms and transporters
    corecore