290 research outputs found

    Quantum phase transitions in a new exactly solvable quantum spin biaxial model with multiple spin interactions

    Full text link
    The new integrable quantum spin model is proposed. The model has a biaxial magnetic anisotropy of alternating coupling between spins together with multiple spin interactions. Our model gives the possibility to exactly find thermodynamic characteristics of the considered spin chain. The ground state of the model can reveal spontaneous values of the total magnetic and antiferromagnetic moments, caused by multiple spin couplings. Also, in the ground state, depending on the strength of multiple spin couplings, our model manifests several quantum critical points, some of which are governed by the external magnetic field

    Acoustic Cyclotron Resonance and Giant High Frequency Magnetoacoustic Oscillations in Metals with Locally Flattened Fermi Surface

    Full text link
    We consider the effect of local flattening on the Fermi surface (FS) of a metal upon geometric oscillations of the velocity and attenuation of ultrasonic waves in the neighborhood of the acoustic cyclotron resonance. It is shown that such peculiarities of the local geometry of the FS can lead to a significant enhancement of both cyclotron resonance and geometric oscillations. Characteristic features of the coupling of ultrasound to shortwave cyclotron waves arising due to the local flattening of the FS are analyzed. PACS numbers 71.18.+y; 72.15.Gd; 72.15.-vComment: 8 pages, 3 figures, text revise

    On the connection between gamma and radio radiation spectra in pulsars

    Full text link
    The model of pulsar radio emission is discussed in which a coherent radio emis-sion is excited in a vacuum gap above polar cap of neutron star. Pulsar X and gamma radiation are considered as the result of low-frequency radio emission inverse Comp-ton scattering on ultra relativistic electrons accelerated in the gap. The influence of the pulsar magnetic field on Compton scattering is taken into account. The relation of radio and gamma radiation spectra has been found in the framework of the model.Comment: 15 pages, 3 figures, Russian version accepted to JETP, partly published in JETP Letters, Vol. 85, #6 (2007

    Diffusive Shock Acceleration with Magnetic Amplification by Non-resonant Streaming Instability in SNRs

    Full text link
    We investigate the diffusive shock acceleration in the presence of the non-resonant streaming instability introduced by Bell (2004). The numerical MHD simulations of the magnetic field amplification combined with the analytical treatment of cosmic ray acceleration permit us to calculate the maximum energy of particles accelerated by high-velocity supernova shocks. The estimates for Cas A, Kepler, SN1006, and Tycho historical supernova remnants are given. We also found that the amplified magnetic field is preferentially oriented perpendicular to the shock front downstream of the fast shock. This explains the origin of the radial magnetic fields observed in young supernova remnants.Comment: 18 pages, 9 figures, accepted to Ap

    Stationary Kolmogorov Solutions of the Smoluchowski Aggregation Equation with a Source Term

    Get PDF
    In this paper we show how the method of Zakharov transformations may be used to analyze the stationary solutions of the Smoluchowski aggregation equation for arbitrary homogeneous kernel. The resulting massdistributions are of Kolmogorov type in the sense that they carry a constant flux of mass from small masses to large. We derive a ``locality criterion'', expressed in terms of the asymptotic properties of the kernel, that must be satisfied in order for the Kolmogorov spectrum to be an admissiblesolution. Whether a given kernel leads to a gelation transition or not can be determined by computing the mass capacity of the Kolmogorov spectrum. As an example, we compute the exact stationary state for the family of kernels,Kζ(m1,m2)=(m1m2)ζ/2K_\zeta(m_1,m_2)=(m_1m_2)^{\zeta/2} which includes both gelling and non-gelling cases, reproducing the known solution in the case ζ=0\zeta=0. Surprisingly, the Kolmogorov constant is the same for all kernels in this family.Comment: This article is an expanded version of a talk given at IHP workshop "Dynamics, Growth and Singularities of Continuous Media", Paris July 2003. Updated 01/04/04. Revised version with additional discussion, references added, several typographical errors corrected. Revised version accepted for publication by Phys. Rev.

    Quantum Oscillations of Elastic Moduli and Softening of Phonon Modes in Metals

    Full text link
    In this paper we present a theoretical analysis of the effect of magnetostriction on quantum oscillations of elastic constants in metals under strong magnetic fields. It is shown that at low temperatures a significant softening of some acoustic modes could occur near peaks of quantum oscillations of the electron density of states (DOS) at the Fermi surface (FS). This effect is caused by a magnetic instability of a special kind, and it can give rise to a lattice instability. We also show that the most favorable conditions for this instability to be revealed occur in metals whose Fermi surfaces include nearly cylindrical segments.Comment: 5 pages, 1 figur
    corecore