21 research outputs found

    Discrete versus continuous domain models for disease mapping

    Get PDF
    The main goal of disease mapping is to estimate disease risk and identify high-risk areas. Such analyses are hampered by the limited geographical resolution of the available data. Typically the available data are counts per spatial unit and the common approach is the Besag--York--Molli{\'e} (BYM) model. When precise geocodes are available, it is more natural to use Log-Gaussian Cox processes (LGCPs). In a simulation study mimicking childhood leukaemia incidence using actual residential locations of all children in the canton of Z\"urich, Switzerland, we compare the ability of these models to recover risk surfaces and identify high-risk areas. We then apply both approaches to actual data on childhood leukaemia incidence in the canton of Z\"urich during 1985-2015. We found that LGCPs outperform BYM models in almost all scenarios considered. Our findings suggest that there are important gains to be made from the use of LGCPs in spatial epidemiology.Comment: 28 pages, 4 figures, 2 Table

    Direct and indirect effects of the COVID-19 pandemic on mortality in Switzerland.

    Get PDF
    The direct and indirect impact of the COVID-19 pandemic on population-level mortality is of concern to public health but challenging to quantify. Using data for 2011-2019, we applied Bayesian models to predict the expected number of deaths in Switzerland and compared them with laboratory-confirmed COVID-19 deaths from February 2020 to April 2022 (study period). We estimated that COVID-19-related mortality was underestimated by a factor of 0.72 (95% credible interval [CrI]: 0.46-0.78). After accounting for COVID-19 deaths, the observed mortality was -4% (95% CrI: -8 to 0) lower than expected. The deficit in mortality was concentrated in age groups 40-59 (-12%, 95%CrI: -19 to -5) and 60-69 (-8%, 95%CrI: -15 to -2). Although COVID-19 control measures may have negative effects, after subtracting COVID-19 deaths, there were fewer deaths in Switzerland during the pandemic than expected, suggesting that any negative effects of control measures were offset by the positive effects. These results have important implications for the ongoing debate about the appropriateness of COVID-19 control measures

    Bayesian spatial modelling of terrestrial radiation in Switzerland

    Get PDF
    The geographic variation of terrestrial radiation can be exploited in epidemiological studies of the health effects of protracted low-dose exposure. Various methods have been applied to derive maps of this variation. We aimed to construct a map of terrestrial radiation for Switzerland. We used airborne γ\gamma-spectrometry measurements to model the ambient dose rates from terrestrial radiation through a Bayesian mixed-effects model and conducted inference using Integrated Nested Laplace Approximation (INLA). We predicted higher levels of ambient dose rates in the alpine regions and Ticino compared with the western and northern parts of Switzerland. We provide a map that can be used for exposure assessment in epidemiological studies and as a baseline map for assessing potential contamination.Comment: 27 pages, 10 figure

    Ambient heat exposure and COPD hospitalisations in England: a nationwide case-crossover study during 2007-2018.

    Get PDF
    BACKGROUND: There is emerging evidence suggesting a link between ambient heat exposure and chronic obstructive pulmonary disease (COPD) hospitalisations. Individual and contextual characteristics can affect population vulnerabilities to COPD hospitalisation due to heat exposure. This study quantifies the effect of ambient heat on COPD hospitalisations and examines population vulnerabilities by age, sex and contextual characteristics. METHODS: Individual data on COPD hospitalisation at high geographical resolution (postcodes) during 2007-2018 in England was retrieved from the small area health statistics unit. Maximum temperature at 1 km ×1 km resolution was available from the UK Met Office. We employed a case-crossover study design and fitted Bayesian conditional Poisson regression models. We adjusted for relative humidity and national holidays, and examined effect modification by age, sex, green space, average temperature, deprivation and urbanicity. RESULTS: After accounting for confounding, we found 1.47% (95% Credible Interval (CrI) 1.19% to 1.73%) increase in the hospitalisation risk for every 1°C increase in temperatures above 23.2°C (lags 0-2 days). We reported weak evidence of an effect modification by sex and age. We found a strong spatial determinant of the COPD hospitalisation risk due to heat exposure, which was alleviated when we accounted for contextual characteristics. 1851 (95% CrI 1 576 to 2 079) COPD hospitalisations were associated with temperatures above 23.2°C annually. CONCLUSION: Our study suggests that resources should be allocated to support the public health systems, for instance, through developing or expanding heat-health alerts, to challenge the increasing future heat-related COPD hospitalisation burden

    Bayesian spatial modelling of childhood cancer incidence in Switzerland using exact point data: a nationwide study during 1985-2015

    Full text link
    BACKGROUND: The aetiology of most childhood cancers is largely unknown. Spatially varying environmental factors such as traffic-related air pollution, background radiation and agricultural pesticides might contribute to the development of childhood cancer. This study is the first investigation of the spatial disease mapping of childhood cancers using exact geocodes of place of residence. METHODS: We included 5947 children diagnosed with cancer in Switzerland during 1985-2015 at 0-15 years of age from the Swiss Childhood Cancer Registry. We modelled cancer risk using log-Gaussian Cox processes and indirect standardisation to adjust for age and year of diagnosis. We examined whether the spatial variation of risk can be explained by modelled ambient air concentration of NO2_{2}, modelled exposure to background ionising radiation, area-based socio-economic position (SEP), linguistic region, duration in years of general cancer registration in the canton or degree of urbanisation. RESULTS: For all childhood cancers combined, the posterior median relative risk (RR), compared to the national level, varied by location from 0.83 to 1.13 (min to max). Corresponding ranges were 0.96 to 1.09 for leukaemia, 0.90 to 1.13 for lymphoma, and 0.82 to 1.23 for central nervous system (CNS) tumours. The covariates considered explained 72% of the observed spatial variation for all cancers, 81% for leukaemia, 82% for lymphoma and 64% for CNS tumours. There was weak evidence of an association of CNS tumour incidence with modelled exposure to background ionising radiation (RR per SD difference 1.17; 0.98-1.40) and with SEP (1.6; 1.00-1.13). CONCLUSION: Of the investigated diagnostic groups, childhood CNS tumours showed the largest spatial variation. The selected covariates only partially explained the observed variation of CNS tumours suggesting that other environmental factors also play a role

    Asthma hospitalisations and heat exposure in England: a case-crossover study during 2002-2019.

    Get PDF
    BACKGROUND: Previous studies have reported an association between warm temperature and asthma hospitalisation. They have reported different sex-related and age-related vulnerabilities; nevertheless, little is known about how this effect has changed over time and how it varies in space. This study aims to evaluate the association between asthma hospitalisation and warm temperature and investigate vulnerabilities by age, sex, time and space. METHODS: We retrieved individual-level data on summer asthma hospitalisation at high temporal (daily) and spatial (postcodes) resolutions during 2002-2019 in England from the NHS Digital. Daily mean temperature at 1 km×1 km resolution was retrieved from the UK Met Office. We focused on lag 0-3 days. We employed a case-crossover study design and fitted Bayesian hierarchical Poisson models accounting for possible confounders (rainfall, relative humidity, wind speed and national holidays). RESULTS: After accounting for confounding, we found an increase of 1.11% (95% credible interval: 0.88% to 1.34%) in the asthma hospitalisation risk for every 1°C increase in the ambient summer temperature. The effect was highest for males aged 16-64 (2.10%, 1.59% to 2.61%) and during the early years of our analysis. We also found evidence of a decreasing linear trend of the effect over time. Populations in Yorkshire and the Humber and East and West Midlands were the most vulnerable. CONCLUSION: This study provides evidence of an association between warm temperature and hospital admission for asthma. The effect has decreased over time with potential explanations including temporal differences in patterns of heat exposure, adaptive mechanisms, asthma management, lifestyle, comorbidities and occupation

    Effect of the COVID-19 pandemic on bike-sharing demand and hire time: Evidence from Santander cycles in London

    No full text
    The COVID-19 pandemic has been influencing travel behaviour in many urban areas around the world since the beginning of 2020. As a consequence, bike-sharing schemes have been affected—partly due to the change in travel demand and behaviour as well as a shift from public transit. This study estimates the varying effect of the COVID-19 pandemic on the London bike-sharing system (Santander Cycles) over the period March–December 2020. We employed a Bayesian second-order random walk time-series model to account for temporal correlation in the data. We compared the observed number of cycle hires and hire time with their respective counterfactuals (what would have been if the pandemic had not happened) to estimate the magnitude of the change caused by the pandemic. The results indicated that following a reduction in cycle hires in March and April 2020, the demand rebounded from May 2020, remaining in the expected range of what would have been if the pandemic had not occurred. This could indicate the resiliency of Santander Cycles. With respect to hire time, an important increase occurred in April, May, and June 2020, indicating that bikes were hired for longer trips, perhaps partly due to a shift from public transit.</p

    Birth characteristics and childhood leukemia in Switzerland: a register-based case-control study.

    Get PDF
    PURPOSE Initial genetic alterations in the development of childhood leukemia occur in utero or before conception; both genetic and environmental factors are suspected to play a role. We aimed to investigate the associations between childhood leukemia and perinatal characteristics including birth order, birth interval to older siblings, parental age, birth weight, and multiple birth. METHODS We identified cases diagnosed between 1981 and 2015 and born in Switzerland between 1969 and 2015 from the Swiss Childhood Cancer Registry and randomly sampled five controls per case from national birth records matched on date of birth, sex, and municipality of residence at birth. We used conditional logistic regression to investigate associations between perinatal characteristics and leukemia at ages 0-15 and 0-4 years, and the subtypes acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). RESULTS The study included 1,403 cases of leukemia. We observed increased risks associated with high birth weight (adjusted OR 1.37, 95% CI 1.12-1.69) and multiple birth (1.89, 1.24-2.86). These associations were similar for ALL and stronger for leukemia at ages 0-4 years. For AML, we observed an increased risk for higher birth order (3.08, 0.43-22.03 for fourth or later born children). We found no associations with other perinatal characteristics. CONCLUSION This register-based case-control study adds to the existing evidence of a positive association between high birth weight and risk of childhood leukemia. Furthermore, it suggests children from multiple births are at an increased risk of leukemia

    Childhood cancer and residential proximity to petrol stations: a nationwide registry-based case-control study in Switzerland and an updated meta-analysis.

    Get PDF
    PURPOSE Benzene is a known carcinogen for adult leukemia. Exposure to benzene through parental occupation and the use of household products has been associated with childhood leukemia (CL). Ambient benzene has also been associated with CL and central nervous system (CNS) tumors. We aimed to investigate whether the higher ambient levels of benzene in proximity of petrol stations are associated with a greater risk of childhood cancers, leukemia, and CNS tumors. METHODS We identified children diagnosed with cancer at age 0-15 years during 1985-2015 from the Swiss Childhood Cancer Registry and selected 10 age and sex-matched controls per case from national censuses. We calculated the distance from children's home to the nearest petrol station using precise geocodes. We estimated odds ratios using conditional logistic regression adjusting for ambient levels of NO2, distance to highways, level of urbanization, and presence of a cantonal cancer registry. In addition, we ran a meta-analysis pooling current results for CL with those of previous studies. RESULTS We identified 6129 cases, of which 1880 were leukemias and 1290 CNS tumors. 24 cases lived within 50 m from a petrol station. The adjusted odds ratio of a cancer diagnosis for children thus exposed compared to unexposed children (> 500 m) was 1.29 (0.84-1.98) for all cancers combined, 1.08 (0.46-2.51) for leukemia, and 1.30 (0.51-3.35) for CNS tumors. During 2000-2015, when exposure assessment was more precise, the adjusted odds ratio for any cancer diagnosis was 1.77 (1.05-2.98). The summary relative risk estimate for CL in the meta-analysis including four studies was 2.01 (1.25-3.22). CONCLUSIONS Our study provides weak support for an increased risk of childhood cancers among children living close to petrol stations. A meta-analysis including our study suggests an increased risk for CL

    Bayesian spatial modelling of childhood cancer incidence in Switzerland using exact point data: a nationwide study during 1985-2015.

    Get PDF
    BACKGROUND The aetiology of most childhood cancers is largely unknown. Spatially varying environmental factors such as traffic-related air pollution, background radiation and agricultural pesticides might contribute to the development of childhood cancer. This study is the first investigation of the spatial disease mapping of childhood cancers using exact geocodes of place of residence. METHODS We included 5947 children diagnosed with cancer in Switzerland during 1985-2015 at 0-15 years of age from the Swiss Childhood Cancer Registry. We modelled cancer risk using log-Gaussian Cox processes and indirect standardisation to adjust for age and year of diagnosis. We examined whether the spatial variation of risk can be explained by modelled ambient air concentration of NO2, modelled exposure to background ionising radiation, area-based socio-economic position (SEP), linguistic region, duration in years of general cancer registration in the canton or degree of urbanisation. RESULTS For all childhood cancers combined, the posterior median relative risk (RR), compared to the national level, varied by location from 0.83 to 1.13 (min to max). Corresponding ranges were 0.96 to 1.09 for leukaemia, 0.90 to 1.13 for lymphoma, and 0.82 to 1.23 for central nervous system (CNS) tumours. The covariates considered explained 72% of the observed spatial variation for all cancers, 81% for leukaemia, 82% for lymphoma and 64% for CNS tumours. There was weak evidence of an association of CNS tumour incidence with modelled exposure to background ionising radiation (RR per SD difference 1.17; 0.98-1.40) and with SEP (1.6; 1.00-1.13). CONCLUSION Of the investigated diagnostic groups, childhood CNS tumours showed the largest spatial variation. The selected covariates only partially explained the observed variation of CNS tumours suggesting that other environmental factors also play a role
    corecore