98 research outputs found

    Strength Prediction of Composite Materials from Nano- to Macro-scale

    Get PDF

    ECO-COMPASS

    Get PDF
    Today, mainly man-made materials, such as carbon and glass fibers, are used to produce composite parts in aviation. Renewable materials, such as natural fibers or bio-sourced resin systems, have not yet found their way into aviation. The project ECO-COMPASS aims to evaluate the potential applications of ecologically improved composite materials in the aviation sector in an international collaboration of Chinese and European partners. Natural fibers such as flax and ramie will be used for different types of reinforcements and sandwich cores. Furthermore, bio-based epoxy resins to substitute bisphenol-A based epoxy resins in secondary structures are under investigation. Adapted material protection technologies to reduce environmental influence and to improve fire resistance are needed to fulfil the demanding safety requirements in aviation. Modelling and simulation of chosen eco-composites aims for an optimized use of materials while a Life Cycle Assessment aims to prove the ecological advantages compared to synthetic state-of-the-art materials. This Special Issue provides selected papers from the project consortium partners

    A modified cohesive zone model for the simulation of mixed-mode fracture of co-consolidated thermoplastic laminates considering fiber bridging

    Get PDF
    Fiber bridging is a mechanism that may significantly alter the fracture behavior of composite laminates, adhesively bonded laminates, welded laminates, and co-consolidated laminates. It is therefore quite important for the finite element to take that mechanism into consideration. Such models have been developed for thermosetting laminates; however, this is not the case for thermoplastic laminates and thermoplastic joints. In the present work, a numerical model based on the cohesive zone modelling (CZM) approach has been developed to simulate mixed-mode fracture of co-consolidated thermoplastic laminates by considering fiber bridging. A modified traction separation law of tri-linear form has been developed by superimposing the bi-linear behaviors of the matrix and fibers. Initially, the data from mode I (DCB) and mode II (ENF) fracture toughness tests were used to construct the R-curves of the joints in the opening and sliding directions. The aforementioned curves were embedded into the numerical models through a user-defined material subroutine developed in the LS-Dyna FE code, in order to extract the fiber bridging law directly from the simulation results. The model was used to simulate fracture of a Single-Lap-Shear (SLS) specimen in which a considerable amount of fiber bridging was observed on the fracture area. The numerical results show that the developed model presented improved accuracy in comparison to the CZM employing the bilinear traction-separation law

    An evaluation of time series forecasting models on water consumption data: A case study of Greece

    Full text link
    In recent years, the increased urbanization and industrialization has led to a rising water demand and resources, thus increasing the gap between demand and supply. Proper water distribution and forecasting of water consumption are key factors in mitigating the imbalance of supply and demand by improving operations, planning and management of water resources. To this end, in this paper, several well-known forecasting algorithms are evaluated over time series, water consumption data from Greece, a country with diverse socio-economic and urbanization issues. The forecasting algorithms are evaluated on a real-world dataset provided by the Water Supply and Sewerage Company of Greece revealing key insights about each algorithm and its use

    +Spaces: Intelligent Virtual Spaces for eGovernment

    Get PDF
    Intelligent Environments most commonly take a physical form such as homes, offices, hotels, restaurants, shops, that are equipped with advanced networked computer based systems, which enable better or new lifestyles for people. However, Intelligent Environments can also take the form of virtual online spaces such as SecondLife, which can both mimic the real world and provide functionalities which could not be provided in reality, such as advanced simulations and movement. There is the growing trend for people to spend more time in such virtual environments and, to these ends, this work in progress paper reports on a new project, +Spaces which is developing a range of virtual world tools for e-government applications, and presents some of the concepts and technical challenges involved in creating these intelligent virtual spaces for e-government. © 2010 IEEE
    • …
    corecore