7 research outputs found

    A pan-European epidemiological study reveals honey bee colony survival depends on beekeeper education and disease control

    Get PDF
    Reports of honey bee population decline has spurred many national efforts to understand the extent of the problem and to identify causative or associated factors. However, our collective understanding of the factors has been hampered by a lack of joined up trans-national effort. Moreover, the impacts of beekeeper knowledge and beekeeping management practices have often been overlooked, despite honey bees being a managed pollinator. Here, we established a standardised active monitoring network for 5 798 apiaries over two consecutive years to quantify honey bee colony mortality across 17 European countries. Our data demonstrate that overwinter losses ranged between 2% and 32%, and that high summer losses were likely to follow high winter losses. Multivariate Poisson regression models revealed that hobbyist beekeepers with small apiaries and little experience in beekeeping had double the winter mortality rate when compared to professional beekeepers. Furthermore, honey bees kept by professional beekeepers never showed signs of disease, unlike apiaries from hobbyist beekeepers that had symptoms of bacterial infection and heavy Varroa infestation. Our data highlight beekeeper background and apicultural practices as major drivers of honey bee colony losses. The benefits of conducting trans-national monitoring schemes and improving beekeeper training are discussed

    An enhanced role for an energy storage system in a microgrid with converter-interfaced sources

    No full text
    An enhanced role for the energy storage system (ESS), strategically placed at the point of common coupling (PCC) of the microgrid with the utility grid, is proposed. During island operation, the ESS ensures that the frequency and magnitude of the voltage will remain within the limits specified by the Standard EN 50160. By implementing an adjustable droop control method, the distributed energy resources (DERs) adjust their active and reactive powers in order to fulfil the load demand. When the grid is recovered, the ESS detects its presence and achieves a seamless synchronisation of the microgrid with the main grid, without any kind of communication. In grid-connected mode, the DERs deliver their available active power, whereas their reactive power is determined by a zero-sequence voltage. This voltage is injected by the ESS and aims to the zeroing of the amount of reactive power at the PCC. In this way, a reduction of power losses in the distribution lines of the microgrid is achieved. The effectiveness of the proposed control method in all operation modes, without any physical communication means, is demonstrated through detailed simulation in a representative microgrid with DERs fed by photovoltaics

    A Control Method for Balancing the SoC of Distributed Batteries in Islanded Converter-Interfaced Microgrids

    Get PDF
    In a low-voltage islanded microgrid powered by renewable energy sources, the energy storage systems (ESSs) are considered necessary, in order to maintain the power balance. Since a microgrid can be composed of several distributed ESSs (DESSs), a coordinated control of their state-of-charge (SoC) should be implemented, ensuring the prolonged lifespan. This paper proposes a new decentralized control method for balancing the SoC of DESSs in islanded microgrids, without physical communication. Each DESS injects a current distortion at 175 Hz, when its SoC changes by 10%. This distortion is recognized by every DESS, through a phase-locked loop (PLL). In order to distinguish the origin of the distortion, each DESS injects a distortion of different time duration. This intermediate frequency has been selected in order to avoid the concurrence with the usual harmonics. The DESSs take advantage of this information and inject a current proportional to the SoC. Implementing this strategy, a comparable number of charging/discharging cycles for each DESS are achieved. Furthermore, an active filter operation, implemented in the dq rotating frame for each individual harmonic, is integrated in the control of the distributed generation units, supplying nonlinear loads with high-quality voltage. The effectiveness of this method is verified by detailed simulation results

    Ancillary Services Offered by Distributed Renewable Energy Sources at the Distribution Grid Level: An Attempt at Proper Definition and Quantification

    No full text
    Article number 7106The gradual displacement of synchronous generators driven by conventional power plants, due to the increasing penetration of distributed renewable energy sources (DRES) in distribution grids, is creating a shortage of crucial ancillary services (AS) which are vital for the frequency and voltage stability of the grid. These AS, and some new ones, could now be offered by the DRES, particularly those that are converter interfaced, in a coordinated way in order to preserve the grid stability and resilience. Although recent standards and grid codes specify that the DRES exhibit some system support functions, there are no specifications on how to measure and quantify (M & Q) them both at DRES level and in aggregated form. The M & Q of AS is crucial, since it would allow the AS to be treated as tradable AS in the current and future AS markets. This paper attempts to define a number of AS that can be offered by converter-interfaced DRES and suggests methods for their M & Q. The new AS addressed are: (1) inertial response; (2) primary frequency response; (3) active power smoothing (ramp-rate limitation); (4) exchange of reactive power for voltage regulation; (5) fault-ride-through (FRT) and contribution to fault clearing; (6) voltage harmonic mitigation. Additionally, a rough estimation of the additional investment and operational cost, as well as the financial benefits associated with each AS is provided in order to form the basis for the development of business models around each AS in the near future.Unión Europea Proyecto EASY-RES (Horizonte 2020) 76409

    Development and evaluation of a core genome multilocus sequence typing scheme for Paenibacillus larvae, the deadly American foulbrood pathogen of honeybees

    No full text
    Paenibacillus larvae is the causative agent of the fatal American foulbrood disease in honeybees (Apis mellifera). Strain identification is vital for preventing the spread of the disease. To date, the most accessible and robust scheme to identify strains is the multilocus sequence typing (MLST) method. However, this approach has limited resolution, especially for epidemiological studies. As the cost of whole-genome sequencing has decreased and as it becomes increasingly available to most laboratories, an extended MLST based on the core genome (cgMLST) presents a valuable tool for high-resolution investigations. In this study, we present a standardized, robust cgMLST scheme for P. larvae typing using whole-genome sequencing. A total of 333 genomes were used to identify, validate and evaluate 2419 core genes. The cgMLST allowed fine-scale differentiation between samples that had the same profile using traditional MLST and allowed for the characterization of strains impossible by MLST. The scheme was successfully used to trace a localized Swedish outbreak, where a cluster of 38 isolates was linked to a country-wide beekeeping operation. cgMLST greatly enhances the power of a traditional typing scheme, while preserving the same stability and standardization for sharing results and methods across different laboratories

    Risk indicators affecting honeybee colony survival in Europe : one year of surveillance

    No full text
    The first pan-European harmonized active epidemiological surveillance program on honeybee colony mortality (EPILOBEE) was set up across 17 European Member States to estimate honeybee colony mortality over winter and during the beekeeping season. In nine Member States, overwinter losses were higher and statistically different from the empirical level of 10 % under which the level of overwinter mortality was considered as acceptable with usual beekeeping conditions. In four other countries, these losses were lower. Using multivariable Poisson regression models, it was showed that the size of the operation and apiary and the clinically detected varroosis, American foulbrood (AFB), and nosemosis before winter significantly affected 2012-2013 overwinter losses. Clinically detected diseases, the size of the operation and apiary, and the non-participation to a common veterinary treatment significantly affected 2013 summer losses. EPILOBEE was a prerequisite to implement future projects studying risk factors affecting colony health such as multiple and co-exposure to pesticides
    corecore