32 research outputs found

    Antibiotic-Impregnated Bone Grafts in Orthopaedic and Trauma Surgery: A Systematic Review of the Literature

    Get PDF
    There exist several options for local antibiotic therapy in orthopaedic and trauma surgery. Over the past years, the use of antibiotic-impregnated bone grafts (AIBGs) has become a popular procedure in the treatment of bone and joint infections. A major advantage of AIBGs involves the possibility of impregnation of various antibiotics depending on the sensitivity profile of the causative organism, whereas an additional surgery with removal of the antibiotic carrier is not necessary, as in the use of antibiotic-loaded bone cement. However, generalized conclusions cannot be clearly drawn from the existing literature due to differences of bone used, impregnation method, antibiotics, their doses, laboratory circumstances, or clinical indications. The present work reviews the literature regarding this topic and sheds some light onto the choice of bone and antibiotics, manufacturing details, and clinical experience

    Vacuum-assisted closure in the treatment of early hip joint infections

    Get PDF
    The aim of the present study was to evaluate the efficacy of the vacuum-assisted closure (V.A.C.) system in the treatment of early hip joint infections. 28 patients (11 m / 17 f; mean age 71 y. [43-84]) with early hip joint infections have been treated by means of the V.A.C.-therapy. At least one surgical revision [1-7] has been unsuccessfully performed for infection treatment prior to V.A.C. - application. Pathogen organisms could have been isolated in 22/28 wounds. During revision, cup inlay and prosthesis head have been exchanged and 1-3 polyvinylalcohol sponges inserted into the wound cavity/ periprosthetically at an initial continuous pressure of 200 mm Hg. Postoperatively, a systemic antibiosis was given according to antibiogram. 48-72 h after surgery an alteration from haemorrhagic to serous fluid was observed in the V.A.C.-canister. Afterwards, the pressure was decreased to 150 mm Hg and remained at this level till sponge removal. After a mean period of 9 [3-16] days the inflammation parameters have been retrogressive and the sponges were removed. An infection eradication could be achieved in 26/28 cases. In the two remaining cases the infected prosthesis had to be explanted and a gentamicin-vancomycin-loaded spacer has been implanted, respectively. At a total mean follow-up of 36 [12-87] months no reinfection or infection persistence was observed. The V.A.C.-system can be a valuable contribution in the treatment of early joint infections when properly used. Indications should be early infections with well-maintained soft-tissues for retention of the negative atmospheric pressure

    Antifungal-Loaded Acrylic Bone Cement in the Treatment of Periprosthetic Hip and Knee Joint Infections : A Review

    Get PDF
    Little is known about the clinical use of antifungal-loaded acrylic bone cement in the treatment of periprosthetic hip and knee joint infections (PJIs). Hence, we performed a literature search using PubMed/MEDLINE from inception until December 2021. Search terms were “cement” in combination with 13 antifungal agents. A total of 10 published reports were identified, which described 11 patients and 12 joints in which antifungal-loaded cement was employed. All studies were case reports or case series, and no randomized controlled trials were identified. In 6 of 11 patients, predisposing comorbidities regarding the emergence of a fungal PJI were present. The majority of the studies reported on infections caused by Candida species. In six cases (seven joints), the cement was solely impregnated with an antifungal, but no antibiotic agent (amphotericin B, voriconazole, and fluconazole). In the other five joints, the cement was impregnated with both antibiotic(s) and antifungals. Great discrepancies were seen regarding the exact loading dose. Four studies investigated the local elution of antifungal agents in the early postoperative period and observed a local release of antifungals in vivo. We conclude that there is a paucity of data pertaining to the clinical use of antifungal-loaded bone cement, and no studies have assessed the clinical efficacy of such procedures. Future studies are urgently required to evaluate this use of antifungals in PJI

    Occurrence of Rare Pathogens at the Site of Periprosthetic Hip and Knee Joint Infections: A Retrospective, Single-Center Study

    Get PDF
    The frequency and clinical relevance of rare pathogens at the site of periprosthetic infections of the hip and knee joint and their antibiotic resistance profiles have not yet been assessed indepth. We retrospectively analyzed all periprosthetic hip and knee joint infections that occurred between 2016 and 2020 in a single center in southwest Germany. Among 165 infections, 9.7% were caused by rare microorganisms such as Veilonella sp., Pasteurella sp., Pantoea sp., Citrobacter koseri, Serratia marcescens, Parvimonas micra, Clostridium difficile, Finegoldia magna, Morganella morganii, and yeasts. No resistance to piperacillin/tazobactam, carbapenemes, fluoroquinolones, or gentamicin was observed. Some bacteria displayed resistance to ampicillin, ampicillin/sulbactam, and cefuroxime. We present follow-up data of patients with infections due to rare pathogens and discuss the importance of close, interdisciplinary collaboration between orthopedic surgeons and clinical microbiologists to carefully select the most appropriate anti-infective treatment regimens for the increasing number of patients with such infections

    Elution of gentamicin and vancomycin from polymethylmethacrylate beads and hip spacers in vivo

    Get PDF
    Background and purpose Late infections after total hip arthroplasty are still a problem. Treatment procedures include resection arthroplasty with implantation of antibiotic-loaded beads or implantation of an antibiotic-impreganted spacer. However, little is known about antibiotic elution from bone cement beyond the first 2–3 postoperative days in humans

    Are Cement Spacers and Beads Loaded with the Correct Antibiotic(s) at the Site of Periprosthetic Hip and Knee Joint Infections?

    No full text
    The optimal impregnation of antibiotic-loaded bone cement in the treatment of periprosthetic hip and knee joint infection is unknown. It is also unclear, whether a suboptimal impregnation might be associated with a higher persistence of infection. A total of 93 patients (44 knee, 49 hip) were retrospectively evaluated, and the most common organism was a methicillin-resistant Staphylococcus epidermidis, followed by methicillin-susceptible Staphylococcus aureus. Of all the organisms, 37.1% were resistant against gentamicin and 54.2% against clindamycin. All organisms were susceptible against vancomycin. In 41 cases, gentamicin-loaded beads were inserted and in 52 cases, spacers: (2 loaded only with gentamicin, 18 with gentamicin + vancomycin, 19 with gentamicin + clindamycin, and 13 with gentamicin + vancomycin + clindamycin). The analysis of each antibiotic impregnation showed that complete susceptibility was present in 38.7% of the cases and partial susceptibility in 28%. In the remaining 33.3%, no precise statement can be made because either there was a culture-negative infection or the antibiotic(s) were not tested against the specific organism. At a mean follow-up of 27.9 months, treatment failure was observed in 6.7% of the cases. Independent of which antibiotic impregnation was used, when the organism was susceptible against the locally inserted antibiotics or not tested, reinfection or persistence of infection was observed in the great majority of cases. Future studies about the investigation of the optimal impregnation of antibiotic-loaded bone cement are welcome

    Antibiotic Elution from Hip and Knee Acrylic Bone Cement Spacers: A Systematic Review

    No full text
    Knowledge about the elution from antibiotic-loaded cement spacers is an indispensable premise for guarantee of clinical success. A systematic literature search was performed through PubMed. Search terms were “antibiotic elution” and “antibiotic release” in combination with “spacer,” “hip spacer,” and “knee spacer,” respectively. A total of 11 studies could be identified. Seven studies reported on the release of antibiotics after spacer implantation, three studies at spacer removal, and one study on both time points. Seven studies reported on hip spacers, one study on knee spacers, and three studies on both. In eight studies, custom-made spacers have been implanted and in three prefabricated ones. In the majority of the studies, the cement has been loaded with an antibiotic combination, mostly consisting of aminoglycoside (either gentamicin or tobramycin) and vancomycin. Measured concentrations exceeded the minimal inhibitory concentration of the particular pathogen organisms in each case. However, large discrepancies were observed with regard to the height of the antibiotic concentration depending on the antibiotic combination and the antibiotic ratio used. Current literature data indicate a sufficient elution of antibiotics after spacer implantation and at spacer removal, respectively. Future studies are required to optimize the local antibiotic therapy at the site of spacer implantation
    corecore