54 research outputs found

    Nucleotide repeats in mitochondrial genome determine human lifespan

    Get PDF
    Direct nucleotide repeats can facilitate deletions of segments of mitochondrial genome1, leading to a wide range of neuromuscular disorders1,2 as well as aging2,3 in humans. We hypothesized that the number of the direct perfect repeats in human mitochondrial genomes influences longevity through the formation of harmful mtDNA deletions in the somatic cells. The analysis of the complete mitochondrial genomes of 762 unrelated Japanese individuals4-6 reveals a negative correlation between the abundance of the direct perfect repeats and the expected longevity. This association is largely due to the disruption of the common repeat (8470,13447) by a point mutation 8473C which occurred at the origin of the D4a haplogroup characterized by extreme longevity in Japan7. Our results provide the first evidence for correlation between the number of nucleotide repeats and the lifespan on intraspecific level

    Purifying selection in mitochondria, free-living and obligate intracellular proteobacteria

    Get PDF
    BACKGROUND: The effectiveness of elimination of slightly deleterious mutations depends mainly on drift and recombination frequency. Here we analyze the influence of these two factors on the strength of the purifying selection in mitochondrial and proteobacterial orthologous genes taking into account the differences in the organism lifestyles. RESULTS: (I) We found that the probability of fixation of nonsynonymous substitutions (K(n)/K(s)) in mitochondria is significantly lower compared to obligate intracellular bacteria and even marginally significantly lower compared to free-living bacteria. The comparison of bacteria of different lifestyles demonstrates more effective elimination of slightly deleterious mutations in (II) free-living bacteria as compared to obligate intracellular species and in (III) obligate intracellular parasites as compared to obligate intracellular symbionts. (IV) Finally, we observed that the level of the purifying selection (i.e. 1-K(n)/K(s)) increases with the density of mobile elements in bacterial genomes. CONCLUSION: This study shows that the comparison of patterns of molecular evolution of orthologous genes between ecologically different groups of organisms allow to elucidate the genetic consequences of their various lifestyles. Comparing the strength of the purifying selection among proteobacteria with different lifestyles we obtained results, which are in concordance with theoretical expectations: (II) low effective population size and level of recombination in obligate intracellular proteobacteria lead to less effective elimination of mutations compared to free-living relatives; (III) rare horizontal transmissions, i.e. effectively zero recombination level in symbiotic obligate intracellular bacteria leads to less effective purifying selection than in parasitic obligate intracellular bacteria; (IV) the increased frequency of recombination in bacterial genomes with high mobile element density leads to a more effective elimination of slightly deleterious mutations. At the same time, (I) more effective purifying selection in relatively small populations of nonrecombining mitochondria as compared to large populations of recombining proteobacteria was unexpected. We hypothesize that additional features such as the high number of protein-protein interactions or female germ-cell atresia increase evolutionary constraints and maintain the effective purifying selection in mitochondria, but more work is needed to definitely establish these additional features

    Roles of Mitochondrial Dynamics under Stressful and Normal Conditions in Yeast Cells

    Get PDF
    Eukaryotic cells contain dynamic mitochondrial filaments: they fuse and divide. Here we summarize data on the protein machinery driving mitochondrial dynamics in yeast and also discuss the factors that affect the fusion-fission balance. Fission is a general stress response of cells, and in the case of yeast this response appears to be prosurvival. At the same time, even under normal conditions yeast mitochondria undergo continuous cycles of fusion and fission. This seems to be a futile cycle and also expensive from the energy point of view. Why does it exist? Benefits might be the same as in the case of sexual reproduction. Indeed, mixing and separating of mitochondrial content allows mitochondrial DNA to segregate and recombine randomly, leading to high variation in the numbers of mutations per individual mitochondrion. This opens a possibility for effective purifying selection-elimination of mitochondria highly contaminated by deleterious mutations. The beneficial action presumes a mechanism for removal of defective mitochondria. We argue that selective mitochondrial autophagy or asymmetrical distribution of mitochondria during cell division could be at the core of such mechanism

    Genetic and Epigenetic Regulation of Human lincRNA Gene Expression

    Get PDF
    Large intergenic noncoding RNAs (lincRNAs) are still poorly functionally characterized. We analyzed the genetic and epigenetic regulation of human lincRNA expression in the GenCord collection by using three cell types from 195 unrelated European individuals. We detected a considerable number of cis expression quantitative trait loci (cis-eQTLs) and demonstrated that the genetic regulation of lincRNA expression is independent of the regulation of neighboring protein-coding genes. lincRNAs have relatively more cis-eQTLs than do equally expressed protein-coding genes with the same exon number. lincRNA cis-eQTLs are located closer to transcription start sites (TSSs) and their effect sizes are higher than cis-eQTLs found for protein-coding genes, suggesting that lincRNA expression levels are less constrained than that of protein-coding genes. Additionally, lincRNA cis-eQTLs can influence the expression level of nearby protein-coding genes and thus could be considered as QTLs for enhancer activity. Enrichment of expressed lincRNA promoters in enhancer marks provides an additional argument for the involvement of lincRNAs in the regulation of transcription in cis. By investigating the epigenetic regulation of lincRNAs, we observed both positive and negative correlations between DNA methylation and gene expression (expression quantitative trait methylation [eQTMs]), as expected, and found that the landscapes of passive and active roles of DNA methylation in gene regulation are similar to protein-coding genes. However, lincRNA eQTMs are located closer to TSSs than are protein-coding gene eQTMs. These similarities and differences in genetic and epigenetic regulation between lincRNAs and protein-coding genes contribute to the elucidation of potential functions of lincRNAs

    Increased prevalence of clonal hematopoiesis of indeterminate potential amongst people living with HIV

    Full text link
    People living with human immunodeficiency virus (PLWH) have significantly increased risk for cardiovascular disease in part due to inflammation and immune dysregulation. Clonal hematopoiesis of indeterminate potential (CHIP), the age-related acquisition and expansion of hematopoietic stem cells due to leukemogenic driver mutations, increases risk for both hematologic malignancy and coronary artery disease (CAD). Since increased inflammation is hypothesized to be both a cause and consequence of CHIP, we hypothesized that PLWH have a greater prevalence of CHIP. We searched for CHIP in multi-ethnic cases from the Swiss HIV Cohort Study (SHCS, n = 600) and controls from the Atherosclerosis Risk in the Communities study (ARIC, n = 8111) from blood DNA-derived exome sequences. We observed that HIV is associated with a twofold increase in CHIP prevalence, both in the whole study population and in a subset of 230 cases and 1002 matched controls selected by propensity matching to control for demographic imbalances (SHCS 7%, ARIC 3%, p = 0.005). We also observed that ASXL1 is the most commonly mutated CHIP-associated gene in PLWH. Our results suggest that CHIP may contribute to the excess cardiovascular risk observed in PLWH

    Nucleotide repeats in mitochondrial genome determine human lifespan

    No full text

    Purifying selection in mitochondria, free-living and obligate intracellular proteobacteria

    No full text
    Abstract Background The effectiveness of elimination of slightly deleterious mutations depends mainly on drift and recombination frequency. Here we analyze the influence of these two factors on the strength of the purifying selection in mitochondrial and proteobacterial orthologous genes taking into account the differences in the organism lifestyles. Results (I) We found that the probability of fixation of nonsynonymous substitutions (Kn/Ks) in mitochondria is significantly lower compared to obligate intracellular bacteria and even marginally significantly lower compared to free-living bacteria. The comparison of bacteria of different lifestyles demonstrates more effective elimination of slightly deleterious mutations in (II) free-living bacteria as compared to obligate intracellular species and in (III) obligate intracellular parasites as compared to obligate intracellular symbionts. (IV) Finally, we observed that the level of the purifying selection (i.e. 1-Kn/Ks) increases with the density of mobile elements in bacterial genomes. Conclusion This study shows that the comparison of patterns of molecular evolution of orthologous genes between ecologically different groups of organisms allow to elucidate the genetic consequences of their various lifestyles. Comparing the strength of the purifying selection among proteobacteria with different lifestyles we obtained results, which are in concordance with theoretical expectations: (II) low effective population size and level of recombination in obligate intracellular proteobacteria lead to less effective elimination of mutations compared to free-living relatives; (III) rare horizontal transmissions, i.e. effectively zero recombination level in symbiotic obligate intracellular bacteria leads to less effective purifying selection than in parasitic obligate intracellular bacteria; (IV) the increased frequency of recombination in bacterial genomes with high mobile element density leads to a more effective elimination of slightly deleterious mutations. At the same time, (I) more effective purifying selection in relatively small populations of nonrecombining mitochondria as compared to large populations of recombining proteobacteria was unexpected. We hypothesize that additional features such as the high number of protein-protein interactions or female germ-cell atresia increase evolutionary constraints and maintain the effective purifying selection in mitochondria, but more work is needed to definitely establish these additional features.</p
    • …
    corecore