13 research outputs found

    The mRubyFT Protein, Genetically Encoded Blue-to-Red Fluorescent Timer.

    Full text link
    peer reviewedGenetically encoded monomeric blue-to-red fluorescent timers (mFTs) change their fluorescent color over time. mCherry-derived mFTs were used for the tracking of the protein age, visualization of the protein trafficking, and labeling of engram cells. However, the brightness of the blue and red forms of mFTs are 2-3- and 5-7-fold dimmer compared to the brightness of the enhanced green fluorescent protein (EGFP). To address this limitation, we developed a blue-to-red fluorescent timer, named mRubyFT, derived from the bright mRuby2 red fluorescent protein. The blue form of mRubyFT reached its maximum at 5.7 h and completely transformed into the red form that had a maturation half-time of 15 h. Blue and red forms of purified mRubyFT were 4.1-fold brighter and 1.3-fold dimmer than the respective forms of the mCherry-derived Fast-FT timer in vitro. When expressed in mammalian cells, both forms of mRubyFT were 1.3-fold brighter than the respective forms of Fast-FT. The violet light-induced blue-to-red photoconversion was 4.2-fold less efficient in the case of mRubyFT timer compared to the same photoconversion of the Fast-FT timer. The timer behavior of mRubyFT was confirmed in mammalian cells. The monomeric properties of mRubyFT allowed the labeling and confocal imaging of cytoskeleton proteins in live mammalian cells. The X-ray structure of the red form of mRubyFT at 1.5 Å resolution was obtained and analyzed. The role of the residues from the chromophore surrounding was studied using site-directed mutagenesis

    Elucidation of the Conformational Transition of Oligopeptidase B by an Integrative Approach Based on the Combination of X-ray, SAXS, and Essential Dynamics Sampling Simulation

    No full text
    Oligopeptidase B (OPB) is the least studied group from the prolyl oligopeptidase family. OPBs are found in bacteria and parasitic protozoa and represent pathogenesis factors of the corresponding infections. OPBs consist of two domains connected by a hinge region and have the characteristics of conformational dynamics, which include two types of movements: the bridging/separation of α/β-hydrolase catalytic and β-propeller-regulatory domains and the movement of a loop carrying catalytic histidine, which regulates an assembly/disassembly of the catalytic triad. In this work, an elucidation of the interdomain dynamics of OPB from Serratia proteamaculans (SpOPB) with and without modification of the hinge region was performed using a combination of X-ray diffraction analysis and small-angle X-ray scattering, which was complemented with an essential dynamics sampling (EDS) simulation. The first crystal structure of catalytically deficient SpOPB (SpOPBS532A) with an intact hinge sequence is reported. Similarly to SpOPB with modified hinges, SpOPBS532A was crystallized in the presence of spermine and adopted an intermediate conformation in the crystal lattice. Despite the similarity of the crystal structures, a difference in the catalytic triad residue arrangement was detected, which explained the inhibitory effect of the hinge modification. The SpOPBS532A structure reconstituted to the wild-type form was used as a starting point to the classical MD followed by EDS simulation, which allowed us to simulate the domain separation and the transition of the enzyme from the intermediate to open conformation. The obtained open state model was in good agreement with the experimental SAXS data

    Elucidation of the Conformational Transition of Oligopeptidase B by an Integrative Approach Based on the Combination of X-ray, SAXS, and Essential Dynamics Sampling Simulation

    No full text
    Oligopeptidase B (OPB) is the least studied group from the prolyl oligopeptidase family. OPBs are found in bacteria and parasitic protozoa and represent pathogenesis factors of the corresponding infections. OPBs consist of two domains connected by a hinge region and have the characteristics of conformational dynamics, which include two types of movements: the bridging/separation of α/β-hydrolase catalytic and β-propeller-regulatory domains and the movement of a loop carrying catalytic histidine, which regulates an assembly/disassembly of the catalytic triad. In this work, an elucidation of the interdomain dynamics of OPB from Serratia proteamaculans (SpOPB) with and without modification of the hinge region was performed using a combination of X-ray diffraction analysis and small-angle X-ray scattering, which was complemented with an essential dynamics sampling (EDS) simulation. The first crystal structure of catalytically deficient SpOPB (SpOPBS532A) with an intact hinge sequence is reported. Similarly to SpOPB with modified hinges, SpOPBS532A was crystallized in the presence of spermine and adopted an intermediate conformation in the crystal lattice. Despite the similarity of the crystal structures, a difference in the catalytic triad residue arrangement was detected, which explained the inhibitory effect of the hinge modification. The SpOPBS532A structure reconstituted to the wild-type form was used as a starting point to the classical MD followed by EDS simulation, which allowed us to simulate the domain separation and the transition of the enzyme from the intermediate to open conformation. The obtained open state model was in good agreement with the experimental SAXS data

    Crystal Structure of Inhibitor-Bound Bacterial Oligopeptidase B in the Closed State: Similarity and Difference between Protozoan and Bacterial Enzymes

    No full text
    The crystal structure of bacterial oligopeptidase B from Serratia proteamaculans (SpOpB) in complex with a chloromethyl ketone inhibitor was determined at 2.2 Å resolution. SpOpB was crystallized in a closed (catalytically active) conformation. A single inhibitor molecule bound simultaneously to the catalytic residues S532 and H652 mimicked a tetrahedral intermediate of the catalytic reaction. A comparative analysis of the obtained structure and the structure of OpB from Trypanosoma brucei (TbOpB) in a closed conformation showed that in both enzymes, the stabilization of the D-loop (carrying the catalytic D) in a position favorable for the formation of a tetrahedral complex occurs due to interaction with the neighboring loop from the β-propeller. However, the modes of interdomain interactions were significantly different for bacterial and protozoan OpBs. Instead of a salt bridge (as in TbOpB), in SpOpB, a pair of polar residues following the catalytic D617 and a pair of neighboring arginine residues from the β-propeller domain formed complementary oppositely charged surfaces. Bioinformatics analysis and structural modeling show that all bacterial OpBs can be divided into two large groups according to these two modes of D-loop stabilization in closed conformations

    Crystal Structure of Inhibitor-Bound Bacterial Oligopeptidase B in the Closed State: Similarity and Difference between Protozoan and Bacterial Enzymes

    No full text
    The crystal structure of bacterial oligopeptidase B from Serratia proteamaculans (SpOpB) in complex with a chloromethyl ketone inhibitor was determined at 2.2 Å resolution. SpOpB was crystallized in a closed (catalytically active) conformation. A single inhibitor molecule bound simultaneously to the catalytic residues S532 and H652 mimicked a tetrahedral intermediate of the catalytic reaction. A comparative analysis of the obtained structure and the structure of OpB from Trypanosoma brucei (TbOpB) in a closed conformation showed that in both enzymes, the stabilization of the D-loop (carrying the catalytic D) in a position favorable for the formation of a tetrahedral complex occurs due to interaction with the neighboring loop from the β-propeller. However, the modes of interdomain interactions were significantly different for bacterial and protozoan OpBs. Instead of a salt bridge (as in TbOpB), in SpOpB, a pair of polar residues following the catalytic D617 and a pair of neighboring arginine residues from the β-propeller domain formed complementary oppositely charged surfaces. Bioinformatics analysis and structural modeling show that all bacterial OpBs can be divided into two large groups according to these two modes of D-loop stabilization in closed conformations

    Insulin receptor-related receptor as an extracellular alkali sensor

    Get PDF
    17sireservedThe insulin receptor-related receptor (IRR), an orphan receptor tyrosine kinase of the insulin receptor family, can be activated by alkaline media both in vitro and in vivo at pH >7.9. The alkali-sensing property of IRR is conserved in frog, mouse, and human. IRR activation is specific, dose-dependent and quickly reversible and demonstrates positive cooperativity. It also triggers receptor conformational changes and elicits intracellular signaling. The pH sensitivity of IRR is primarily defined by its L1F extracellular domains. IRR is predominantly expressed in organs that come in contact with mildly alkaline media. In particular, IRR is expressed in the cell subsets of the kidney that secrete bicarbonate into urine. Disruption of IRR in mice impairs the renal response to alkali loading attested by development of metabolic alkalosis and decreased urinary bicarbonate excretion in response to this challenge. We therefore postulate that IRR is an alkali sensor that functions in the kidney to manage metabolic bicarbonate excess.mixedDeyev, Igor E; Sohet, Fabien; Vassilenko, Konstantin P; Serova, Oxana V; Popova, Nadezhda V; Zozulya, Sergey A; Burova, Elena B; Houillier, Pascal; Rzhevsky, Dmitry I; Berchatova, Anastasija A; Murashev, Arkady N; Chugunov, Anton O; Efremov, Roman G; Nikol'Sky, Nikolai N; Bertelli, Eugenio; Eladari, Dominique; Petrenko, Alexander G.Deyev, Igor E; Sohet, Fabien; Vassilenko, Konstantin P; Serova, Oxana V; Popova, Nadezhda V; Zozulya, Sergey A; Burova, Elena B; Houillier, Pascal; Rzhevsky, Dmitry I; Berchatova, Anastasija A; Murashev, Arkady N; Chugunov, Anton O; Efremov, Roman G; Nikol'Sky, Nikolai N; Bertelli, Eugenio; Eladari, Dominique; Petrenko, Alexander G

    Clinical Features and Management of the Disease Caused by New Coronaviral Infection (COVID-19) in Children. Version 2

    Get PDF
    The Ministry of Health of the Russian Federation jointly with professional association and experts in the field of pediatrics, infectious diseases and resuscitation has revised guidelines “Clinical Features and Management of the Disease Caused by New Coronaviral Infection (COVID-19) in Children” in order to provide the child population with effective medical care during the pandemic of the new coronaviral infection. The practical experience of specialists from various countries was considered during the development of this document. Special attention should be given to the evidence base of the presented data, as well as to the efficiency and safety issues of medications used in treatment of coronaviral infection and its complications. The authors highlight the problems of prevention, diagnostics and management of pathological conditions caused by COVID-19 in the article according to the presented guidelines. Patient’s management is presented depending on the age and severity of the disease itself. The therapy is considered with regard to etiological, pathogenetic and symptom focus
    corecore